100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

samenvatting - symbolisme vs connectionisme

Beoordeling
-
Verkocht
-
Pagina's
6
Geüpload op
19-10-2023
Geschreven in
2023/2024

Samenvatting van de tekst 'Symbolism vs. Connectionism: A Closing Gap in Artificial Intelligence' door Wang (2017). Over de verschillen tussen symbolische en connectionistische AI.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
19 oktober 2023
Aantal pagina's
6
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

7 - Symbolism vs. Connectionism: A Closing Gap in Artificial Intelligence -
Wang (2017)

Dit paper bespreekt symbolisme en connectionisme:
• Wat zijn symbolische en connectionistische AI?

• Wat zijn de voordelen van symbolische AI? EN van connectionistische AI?
• Hoe beargumenteert de auteur dat het onderscheid tussen symbolische en
connectionistische AI steeds verder vervaagt of zelfs verdwijnt?


- AI: “find how to make machines use language, form abstractions and concepts, solve kinds of
problems now reserved for humans, and improve themselves.” (1956)
→ focused on the symbolic capacities
- central problem of AI: how knowledge is represented, encoded, and processed
- main debate: the dichotomy (contrast) of symbolic and connectionist paradigms
- AGI: artificial general intelligence; human level AI that is capable of completing a wide range
of tasks in an appropriate fashion


- symbolic AI was conceived in the attempt to explicitly represent human knowledge in facts,
rules, and other declarative, symbolic forms
- symbol: a pattern that stands for other things (target can be object, symbol or relation)
- the nature of human language is the organization of signs
→ individual signs have limited ability to convey meanings unless embodied in a sign system
- by abstracting symbols from lower levels to higher levels (physical, cognitive, social,
narrative), we form abstract concepts and find universal meanings


- physical symbol system hypothesis (PSSH): the PSS has the necessary and sufficient
means for general intelligent action, it is the only way toward AGI
- physical symbol system (PSS): a physical computing device for symbol manipulation, which
consists of discrete symbols
- symbols: form expressions, or symbol structures through some sort of physical connections
- physical structures often work as internal representations of the environments and also contain
a set of processes that “operate on expressions to produce other expressions”
→ PSSH implies that the existence of symbolic-level computing in a system is independent of the
physical substrate it operates on


- representation: the mapping from one sign system to another (semiotic morphism)
- knowledge representation: to represent information about the world in a system in a way the
system can employ to store and retrieve old information, infer new knowledge, and perform
complex functions (main problem in AI)

, - symbolic approaches represent knowledge in a highly structured fashion
- the basic units of symbolic representation are symbolic atoms, specific words or concepts
→ this representation paradigm is also called localist as opposed to distributed representation in
connectionist models


- existential graph (EG): symbolic in the sense that it uses individual nodes and arcs to represent
different concepts and their relationships, it captures the aggregate structures of knowledge
- semantic networks: use graphic notations to represent individual objects and categories of
objects
→ the notations include nodes that are connected by labeled links, which represent relations
among objects


- symbolic paradigm is criticized for many reasons, for example: many symbolic structures need
manual coding
→ it is believed that an essential component of intelligence is a physical body that interacts with
the environment through perceptions and behaviors, “grounding” the symbols to the world and
giving them meanings (purely manipulating symbols misses that)
→ intelligence requires non-symbolic processing (but the relationship between symbolic and
non-symbolic prodess is supplement instead of replacement)
→ computers will never be the same as brains (but they both involve computation processes,
both brains and computers are essentially physical symbol systems that can give rise to
intelligence)
- representation-transformation: focuses on information process (instead of computers)
→ Boolean dream: problems explored in symbolic paradigm are too simple from a neural science
point of view, unable to provide rich insight for the computational organization of the brain
- rules can always lead from true statements to other true statements and see thinking
as the manipulations of propositions
→ symbolic models are only succesful at coarse levels, unable to account for the detailed
structure of cognition


- connectionist models refer to bio-inspired networks composed of a large number of
homogenous units and weighted connections among them, analogous to neurons and synapses
in the brain
→ the strengths of the connections reflect how closely the units are linked and can be
strengthened or weakened dynamically by new training data
→ the main task of connectionist paradigm is to tune the weights until the optimum is reached
through techniques like gradient descent


- the signals in the neural nets in brains can be modeled by logic expressions , exhibiting digital
properties
€4,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
immederoever

Maak kennis met de verkoper

Seller avatar
immederoever Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
2 jaar
Aantal volgers
3
Documenten
17
Laatst verkocht
2 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen