100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary All TestVision R tutorials, the outputs and explanation

Beoordeling
-
Verkocht
8
Pagina's
70
Geüpload op
18-10-2023
Geschreven in
2023/2024

This is a summary of all TestVision R tutorials, the outputs and some additional explanation to these.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
18 oktober 2023
Aantal pagina's
70
Geschreven in
2023/2024
Type
Samenvatting

Voorbeeld van de inhoud

Research Methods in Communication Science
Master Communication Science
Tutorials and interpretation


Course outline

• ‘Traditional’ way of teaching
o 2 lectures, 1 (plenary) tutorial per week
o Tutorial bring your own device
• Plus ‘blended’-learning elements
o Online assignments with R (compulsory)
o Homework theory questions (at your choice)



General information:

• Pass with Grade > 5.5.
• Grade
o 65% → Exam (theory and R output)
o 35% → 5 best scores of the weekly tests
• The resit is for 100% of the mark
• Only R → NO SPSS!



Week topics
1. Introduction to regression
2. Multiple regression
3. Mediation
4. Moderation
5. Repeated measures & Mixed-Designs ANOVA
6. MANOVA




1

,Table of Content
Tutorial Assignment: Week 1.................................................................................................................. 3

Tutorial Assignment: Week 2................................................................................................................ 17

Tutorial Assignment: Week 3................................................................................................................ 29

Tutorial Assignment: Week 4................................................................................................................ 41

Tutorial Assignment: Week 5................................................................................................................ 50

Tutorial Assignment: Week 6................................................................................................................ 63




2

,Tutorial Assignment: Week 1
# Loading libraries
library(ggplot2)
library(QuantPsyc)
library(car)
library(lm.beta)
library(haven)
library(psych)
library(gmodels)
library(tidyverse)
library(sjPlot)


# Loading data
ong2011 <- read_sav("YOUR_FOLDER/YOUR_FILE")


Question 1
For the first question, we start by looking at the number of cases and the number of variables in the
dataset. How many are there of both?
You can find the answer simply by viewing the dataset, or by calling nrow(ong1) (to get the
number of rows, i.e., observations/cases) and ncol(ong1) (to get the number of columns, i.e.,
variables).
# introduction - loading data
ong2011 <- read_sav("YOUR_FOLDER/YOUR_FILE")
View(ong2011)
view_df(ong2011)


table(ong2011$Age)
table(ong2011$FB_Status)


# number of rows and colums
nrow(ong2011)
ncol(ong2011)
There are 275 observations (cases) and 8 variables.




3

, Question 2
For which variable(s) makes it more sense to produce frequencies than produce the mean and the
standard deviation?
Gender, grade
Frequencies are appropriate for categorical variables. The two categorical variables are Gender and
Grade. Gender is a nominal variable: a categorical variable without ordering. Grade is an ordinal
variable: a categorical variable with ordering.


Question 3
Before we proceed to any analysis, let's get to know our data a bit.
Calculate the means of all variables using the functions describe() or mean().
The describe() function works on entire data frames. The mean() function only works on
specific variables.


HINT: Remember that you can use the dollar sign ($) operator to index the data set, i.e., to specify a
column within a data frame.


NOTE: The mean() functions only accepts columns (variables) that contain no missing values. If you
want R to disregard missing values when running this function, you need to pass the argument na.rm
= TRUE to remove NA-values (i.e., missing values, NA stands for 'not applicable').
So, obtaining the mean for the variable Age may look like this: mean(ong1$Age, na.rm =
TRUE)
describe(ong2011)
mean(ong2011$Age, na.rm = TRUE)




Question 4
Calculate the mode of all variables, i.e. the value for the variable that occurs most frequently in a given
set of data.
For this, check the frequencies of values that can be taken on by each variable using table().
table(ong2011$FB_Status)


4
€9,29
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
noortjehofstee

Maak kennis met de verkoper

Seller avatar
noortjehofstee Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
9
Lid sinds
6 jaar
Aantal volgers
3
Documenten
3
Laatst verkocht
2 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen