100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary: Cognitive Science, Third Edition, Chapters 7-13

Beoordeling
4,3
(7)
Verkocht
34
Pagina's
31
Geüpload op
28-10-2017
Geschreven in
2017/2018

A summary of chapters 7-13 of the book 'Cognitive Science, an introduction to the study of mind', Third Edition. Part of the course Artificial Intelligence at Utrecht University. The Network Approach - The Evolutionary Approach - The Linguistic Approach - The Emotional Approach - The Social Approach - The Artificial Intelligence Approach - Intelligent Agents and Robots

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
7, 8, 9, 10, 11, 12, 13
Geüpload op
28 oktober 2017
Aantal pagina's
31
Geschreven in
2017/2018
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

7.​ ​The​ ​Network​ ​Approach

Influenced​ ​by​ ​the​ ​principles​ ​of​ ​operation​ ​and​ ​organization​ ​of​ ​real-world​ ​brains.
Connectionism​​ ​tries​ ​to​ ​understand​ ​how​ ​the​ ​mind​ ​performs​ ​certain​ ​kinds​ ​of​ ​operations​ ​via
the​ ​construction​ ​of​ ​an​ ​artificial​ ​neural​ ​network​ ​(ANN)​​ ​-​ ​a​ ​computer​ ​simulation​ ​of​ ​how
populations​ ​of​ ​actual​ ​neurons​ ​perform​ ​tasks.

Artificial​ ​Neural​ ​Networks
Traditional​ ​computers​ ​are​ ​serial​ ​processors​:​ ​perform​ ​one​ ​computation​ ​at​ ​a​ ​time.​ ​The​ ​brain,
as​ ​well​ ​as​ ​ANNs,​ ​are​ ​parallel​ ​distributed​ ​processors​:​ ​large​ ​numbers​ ​of​ ​computing​ ​units
perform​ ​their​ ​calculations​ ​in​ ​parallel.​ ​Knowledge-based​ ​approach​:​ ​One​ ​conceptualizes​ ​the
problem​ ​and​ ​its​ ​solution​ ​in​ ​terms​ ​of​ ​symbols​ ​and​ ​transformations​ ​on​ ​the​ ​symbols​ ​(used​ ​a​ ​lot
in​ ​AI).​ ​Behavior-based​ ​approach​:​ ​A​ ​network​ ​is​ ​allowed​ ​to​ ​produce​ ​a​ ​solution​ ​on​ ​its​ ​own.
This​ ​does​ ​not​ ​involve​ ​the​ ​use​ ​of​ ​symbols​ ​(ANNs).​ ​Representations​ ​are​ ​inherent​ ​in​ ​ANNs​ ​but
do​ ​not​ ​exist​ ​in​ ​them​ ​in​ ​the​ ​form​ ​of​ ​symbols.​ ​They​ ​exist​ ​in​ ​most​ ​networks​ ​as​ ​a​ ​pattern​ ​of
activation​ ​among​ ​the​ ​network’s​ ​elements​ ​-​ ​distributed​ ​representation​.​ ​Local
representation​:​ ​in​ ​the​ ​form​ ​of​ ​activation​ ​in​ ​a​ ​single​ ​node​ ​in​ ​a​ ​network.
Pro:​​ ​They​ ​are​ ​capable​ ​of​ ​learning​ ​—>​ ​adaptively​ ​change​ ​their​ ​responses​ ​over​ ​time​ ​as​ ​they
are​ ​presented​ ​with​ ​new​ ​information​ ​(but​ ​also​ ​possible​ ​in​ ​machines​ ​that​ ​use​ ​symbolic
methods).

Characteristics​ ​of​ ​ANNs:
● Only​ ​exist​ ​as​ ​software​ ​simulations​ ​that​ ​are​ ​run​ ​on​ ​a​ ​computer
● Each​ ​neuron​ ​is​ ​represented​ ​as​ ​a​ ​node​,​ ​and​ ​the​ ​connections​ ​between​ ​nodes​ ​are
represented​ ​as​ ​links​.
● Signal​ ​node:​ ​activation​ ​value​ ​—>​ ​runs​ ​along​ ​the​ ​link​ ​that​ ​connects​ ​it​ ​to​ ​another
node(s)
● Input​ ​>​ ​threshold​ ​value​ ​—>​ ​fire
● Links​ ​have​ ​weights​:​ ​specify​ ​the​ ​strength​ ​of​ ​a​ ​link.​ ​Higher​ ​value,​ ​higher​ ​weight.

Early​ ​conceptions​ ​of​ ​Neural​ ​Networks
First​ ​researchers​ ​to​ ​propose​ ​how​ ​biological​ ​networks​ ​might​ ​function:​ ​McCulloch​ ​and​ ​Pitts,
1943.​ ​They​ ​assumed​ ​each​ ​neuron​ ​had​ ​a​ ​binary​ ​output,​ ​it​ ​could​ ​either​ ​send​ ​out​ ​a​ ​signal​ ​or
not​ ​send​ ​out​ ​a​ ​signal.​ ​Donald​ ​O.​ ​Hebb​ ​(1949)​ ​was​ ​the​ ​first​ ​to​ ​propose​ ​how​ ​changes​ ​among
neurons​ ​might​ ​explain​ ​learning​ ​—>​ ​Hebb​ ​rule:​ ​when​ ​one​ ​cell​ ​repeatedly​ ​activates​ ​another,
the​ ​strength​ ​of​ ​the​ ​connection​ ​between​ ​two​ ​cells​ ​is​ ​increased.​ ​He​ ​defined​ ​2​ ​types​ ​of​ ​cell
groupings:
1. Cell​ ​assembly:​​ ​a​ ​small​ ​group​ ​of​ ​neurons​ ​that​ ​repeatedly​ ​stimulate​ ​one​ ​another
2. Phase​ ​sequence:​​ ​a​ ​group​ ​of​ ​connected​ ​cell​ ​assemblies​ ​that​ ​fire​ ​synchronously​ ​or
nearly​ ​synchronously
Rosenblatt​ ​introduced​ ​in​ ​1958​ ​the​ ​perceptron​:​ ​neural​ ​nets​ ​designed​ ​to​ ​detect​ ​and​ ​recognize
patterned​ ​information​ ​about​ ​the​ ​world,​ ​store​ ​this​ ​information,​ ​and​ ​use​ ​it​ ​in​ ​some​ ​fashion.
They​ ​also​ ​learn​ ​from​ ​experience:​ ​can​ ​modify​ ​their​ ​connection​ ​strengths​ ​by​ ​comparing​ ​their
actual​ ​output​ ​with​ ​a​ ​desired​ ​output​ ​called​ ​the​ ​teacher​.

Back​ ​Propagation​ ​and​ ​Convergent​ ​Dynamics

,Three​ ​layer​ ​network:
1. Input​ ​layer​​ ​-​ ​a​ ​representation​ ​of​ ​the​ ​stimulus​ ​is​ ​presented
2. Hidden​ ​layer​​ ​-​ ​feeds​ ​activation​ ​energy​ ​to​ ​an​ ​output​ ​layer
3. Output​ ​layer​​ ​-​ ​generates​ ​a​ ​representation​ ​of​ ​the​ ​response
Error​ ​signal:​​ ​the​ ​difference​ ​between​ ​the​ ​actual​ ​and​ ​the​ ​desired​ ​outputs.​ ​The​ ​network​ ​uses
the​ ​error​ ​signal​ ​to​ ​modify​ ​the​ ​weights​ ​of​ ​the​ ​links.​ ​The​ ​kind​ ​of​ ​training​ ​based​ ​on​ ​error
feedback​ ​is​ ​called​ ​the​ ​generalized​ ​delta​ ​rule​​ ​or​ ​the​ ​back-propagation​​ ​learning​ ​model.

NETtalk​​ ​Is​ ​an​ ​ANN​ ​designed​ ​to​ ​read​ ​written​ ​English.​ ​Presented​ ​written​ ​letters​ ​—>
pronounces​ ​them​ ​—>​ ​fed​ ​to​ ​a​ ​speech​ ​synthesizer​ ​for​ ​the​ ​production​ ​of​ ​the​ ​sounds.​ ​System
consists​ ​of​ ​3​ ​layers.

Connectionist​ ​Approach:
Pro​:
● The​ ​similarity​ ​between​ ​network​ ​models​ ​and​ ​real-life​ ​neural​ ​networks:​ b ​ iological
plausibility​.
○ Artificial​ ​Networks​ ​share​ ​general​ ​structural​ ​and​ ​functional​ ​correlates​ ​with
biological​ ​networks
○ Artificial​ ​networks​ ​are​ ​capable​ ​of​ ​learning
○ Artificial​ ​networks​ ​react​ ​to​ ​damage​ ​in​ ​the​ ​same​ ​way​ ​that​ ​human​ ​brains​ ​do:
neural​ ​networks​ ​demonstrate​ ​graceful​ ​degradation​​ ​-​ ​gradual​ ​decrease​ ​in
performance​ ​with​ ​increased​ ​damage​ ​to​ ​the​ ​network.​ ​Small​ ​amounts​ ​of
damage​ ​—>​ ​small​ ​reductions​ ​in​ ​performance.
● Displays​ ​interference​​ ​(2​ ​sets​ ​of​ ​information​ ​are​ ​similar​ ​in​ ​content​ ​and​ ​interfere​ ​with
each​ ​other)​ ​and​ ​generalization​​ ​(represented​ ​by​ ​the​ ​ability​ ​to​ ​apply​ ​a​ ​learned​ ​rule​ ​to
a​ ​novel​ ​situation)
Con​:
● Biological​ ​plausibility​ ​should​ ​also​ ​be​ ​viewed​ ​as​ ​problematic
○ Real​ ​neurons​ ​are​ ​massively​ ​parallel,​ ​it​ ​is​ ​not​ ​yet​ ​possible​ ​to​ ​simulate​ ​parallel
processing​ ​of​ ​this​ ​magnitude.
○ Most​ ​networks​ ​show​ ​a​ ​convergent​ ​dynamics​​ ​approach,​ ​the​ ​activity​ ​of​ ​such​ ​a
network​ ​eventually​ ​dies​ ​down​ ​and​ ​reaches​ ​a​ ​stable​ ​state.​ ​This​ ​is​ ​not​ ​the​ ​case
for​ ​brain​ ​activity.​ ​Real​ ​neural​ ​networks​ ​are​ ​oscillatory​ ​and​ ​chaotic.
● Networks​ ​may​ ​have​ ​inadequate​ ​learning​ ​rules
○ Stability-plasticity​ ​dilemma​:​ ​states​ ​that​ ​a​ ​network​ ​should​ ​be​ ​plastic​ ​enough
to​ ​store​ ​novel​ ​input​ ​patterns;​ ​at​ ​the​ ​same​ ​time,​ ​it​ ​should​ ​be​ ​stable​ ​enough​ ​to
prevent​ ​previously​ ​encoded​ ​patterns​ ​form​ ​being​ ​erased.​ ​The​ ​fact​ ​that​ ​ANNs
show​ ​evidence​ ​of​ ​being​ ​caught​ ​in​ ​this​ ​dilemma​ ​is​ ​useful​ ​because​ ​it​ ​may​ ​offer
some​ ​insights​ ​into​ ​human​ ​interference.
○ Catastrophic​ ​interference:​​ ​occurs​ ​in​ ​instances​ ​in​ ​which​ ​a​ ​network​ ​has
learned​ ​to​ ​recognize​ ​a​ ​set​ ​of​ ​patterns​ ​and​ ​then​ ​is​ ​called​ ​on​ ​to​ ​learn​ ​a​ ​new​ ​set.
The​ ​newly​ ​learned​ ​patterns​ ​suddenly​ ​and​ ​completely​ ​erase​ ​the​ ​network’s
memory​ ​of​ ​the​ ​original​ ​patterns.
○ In​ ​supervised​ ​networks​,​ ​a​ ​“teacher”​ ​is​ ​necessary​ ​for​ ​the​ ​network​ ​to​ ​learn.
But​ ​where​ ​does​ ​this​ ​teacher​ ​come​ ​from?

,Semantic​ ​Networks
In​ ​semantic​ ​networks​​ ​each​ ​node​ ​has​ ​a​ ​specific​ ​meaning​ ​and,​ ​therefore,​ ​employs​ ​local
representation​ ​of​ ​concepts.​ ​Has​ ​been​ ​adopted​ ​by​ ​cognitive​ ​psychologists​ ​as​ ​a​ ​way​ ​to
explain​ ​the​ ​organization​ ​and​ ​retrieval​ ​of​ ​information​ ​in​ ​long-term​ ​memory.

Characteristics​ ​of​ ​Semantic​ ​Networks:
● A​ ​node’s​ ​activity​ ​can​ ​spread​ ​outward​ ​along​ ​links​ ​to​ ​activate​ ​other​ ​nodes,​ ​these​ ​nodes
can​ ​then​ ​activate​ ​still​ ​others:​ ​spreading​ ​activation​.​ ​Is​ ​thought​ ​to​ ​underlie​ ​retrieval​ ​of
information​ ​from​ ​long-term​ ​memory.​ ​Alternate​ ​associations​ ​that​ ​facilitate​ ​recall​ ​are
also​ ​called​ ​retrieval​ ​cues​.
● The​ ​distance​ ​between​ ​two​ ​nodes​ ​is​ ​determined​ ​by​ ​their​ ​degree​ ​of​ ​relatedness.
● Priming​:​ ​the​ ​processing​ ​of​ ​a​ ​stimulus​ ​is​ ​facilitated​ ​by​ ​the​ ​network’s​ ​prior​ ​exposure​ ​to
a​ ​related​ ​stimulus.

Hierarchical​ ​Semantic​ ​Network
Study​ ​by​ ​Collins​ ​and​ ​Quillian​ ​suggests​ ​that​ ​semantic​ ​networks​ ​may​ ​have​ ​a​ h ​ ierarchical
organization​,​ ​with​ ​different​ ​levels​ ​representing​ ​concepts​ ​ranging​ ​from​ ​the​ ​most​ ​abstract
down​ ​to​ ​the​ ​most​ ​concrete.​ ​They​ ​used​ ​a​ ​sentence​ ​verification​​ ​task.
1. Superordinate​​ ​category:​ ​animals​ ​—>​ ​eat​ ​food,​ ​breathe
2. Ordinate​​ ​categories:​ ​birds,​ ​cats​ ​—>​ ​can​ ​fly,​ ​purr
3. Subordinate​​ ​categories:​ ​Canary,​ ​Alleycat​ ​—>​ ​can​ ​sing,​ ​is​ ​yellow
A​ ​canary​ ​is​ ​an​ ​animal​ ​—>​ ​longer​ ​reaction​ ​time​ ​than​ ​‘A​ ​canary​ ​is​ ​a​ ​bird/a​ ​canary’
“isa”​ ​and​ ​“has​ ​a”​ ​link,​​ ​bird​ ​“isa”​ ​animal,​ ​bird​ ​“hasa"​ ​feathers
Con​:
● Concepts​ ​may​ ​be​ ​represented​ ​by​ ​prototypes​​ ​that​ ​represent​ ​generic​ ​or​ ​idealized
versions​ ​of​ ​those​ ​concepts.
● Principle​ ​of​ ​cognitive​ ​economy​:​ ​nodes​ ​should​ ​not​ ​have​ ​to​ ​be​ ​coded​ ​for​ ​more​ ​times
than​ ​is​ ​necessary.​ ​Seems​ ​to​ ​work​ ​better​ ​in​ ​principle​ ​than​ ​in​ ​reality.

Propositional​ ​Semantic​ ​Networks
ACT*​ ​is​ ​a​ ​hybrid​ ​model​:​ ​it​ ​specifies​ ​how​ ​multiple​ ​memory​ ​systems​ ​interact​ ​and​ ​how​ ​explicit
knowledge​ ​is​ ​represented.​ ​A​ ​proposition​ ​is​ ​the​ ​smallest​ ​unit​ ​of​ ​knowledge​ ​that​ ​can​ ​be
verified.​ ​Propositional​ ​networks​ ​allow​ ​for​ ​a​ ​greater​ ​variety​ ​of​ ​relationships​ ​among​ ​concepts.
An​ ​agent​ ​link​​ ​specifies​ ​the​ ​subject​ ​of​ ​the​ ​proposition,​ ​an​ ​object​ ​link​​ ​denotes​ ​the​ ​object​ ​or
thing​ ​to​ ​which​ ​the​ ​action​ ​is​ ​directed.​ ​The​ ​relation​ ​link​​ ​characterizes​ ​the​ ​relation​ ​between​ ​the
agent​ ​and​ ​the​ ​object.​ ​Anderson’s​ ​ACT*​ ​model​ ​can​ ​also​ ​account​ ​for​ ​the​ ​specific​ ​memories
each​ ​of​ ​us​ ​has​ ​as​ ​part​ ​of​ ​our​ ​experience.​ ​His​ ​model​ ​does​ ​this​ ​via​ ​its​ ​creation​ ​of​ ​2​ ​classes​ ​of
nodes:​ ​type​​ ​node;​ ​corresponds​ ​to​ ​an​ ​entire​ ​category​ ​(‘dogs’),​ t​ oken​​ ​nodes;​ ​correspond​ ​to
specific​ ​instances​ ​or​ ​specific​ ​items​ ​within​ ​a​ ​category​ ​(“Fido”).

Semantic​ ​Networks​ ​Evaluation:
Con​:
● T.O.T.​ ​phenomenon​:​ ​‘tip​ ​of​ ​the​ ​tongue’.​ ​Semantic​ ​Networks​ ​cannot​ ​easily​ ​explain
these​ ​sort​ ​of​ ​retrieval​ ​blocks.
● The​ ​opposite;​ ​the​ ​situation​ ​in​ ​which​ ​we​ ​can​ ​successfully​ ​retrieve​ ​an​ ​item​ ​from
memory​ ​despite​ ​the​ ​face​ ​that​ ​there​ ​are​ ​no​ ​close​ ​connections​ ​between​ ​retrieval​ ​cues

, and​ ​the​ ​target.​ ​Multiple​ ​links​ ​that​ ​radiate​ ​outward​ ​toward​ ​other​ ​nodes​ ​-​ ​a​ ​high​ d
​ egree
of​ ​fan​​ ​(eg​ ​water).
● Excessive​ ​activation​ ​—>​ ​solution:​ ​implementation​ ​of​ ​an​ ​inhibitory​ ​network.
● Reconstructive​ ​memory​:​ ​constitutes​ ​a​ ​separate​ ​process​ ​of​ ​retrieving​ ​items​ ​-​ ​one
that​ ​does​ ​not​ ​rely​ ​on​ ​spreading​ ​activation​ ​and​ ​the​ ​inherent,​ ​automatic​ ​characteristics
of​ ​the​ ​network.​ ​Guided​ ​search​​ ​-​ ​one​ ​governed​ ​by​ ​intelligence​ ​and​ ​reasoning​ ​(‘What
did​ ​you​ ​do​ ​on​ ​your​ ​birthday​ ​last​ ​year?’).

Network​ ​Science
Network​ ​science​:​ ​to​ ​explore​ ​the​ ​way​ ​in​ ​which​ ​complex​ ​networks​ ​operate.​ ​A​ ​network​ ​is
considered​ ​as​ ​any​ ​collection​ ​of​ ​interconnected​ ​and​ ​interacting​ ​parts.​ ​It’s​ ​interdisciplinary.
Contemporary​ ​network​ ​scientists​ ​additionally​ ​consider​ ​networks​ ​as​ ​dynamical​ ​systems​ ​that
are​ ​doing​ ​things.​ ​All​ ​networks​ ​share​ ​some​ ​universal​ ​mechanism​ ​of​ ​action.

Centrality
Issue​ ​of​ ​centrality​:​ ​how​ ​a​ ​network​ ​coordinates​ ​information.​ ​This​ ​can​ ​be​ ​accomplished
through​ ​a​ ​“leader”​ ​that​ ​receives​ ​information,​ ​evaluates​ ​it,​ ​and​ ​issues​ ​commands.​ ​Computers,
armies​ ​etc​ ​are​ ​systems​ ​of​ ​this​ ​kind.​ ​But​ ​the​ ​interesting​ ​case​ ​is​ ​how​ ​networks​ ​without​ ​any
such​ ​center​ ​achieve​ ​this​ ​kind​ ​of​ ​coordinated​ ​action.​ ​This​ ​question​ ​has​ ​particular​ ​relevance
for​ ​the​ ​human​ ​mind​ ​—>​ ​Cartesian​ ​theater​ ​and​ ​the​ ​homunculus​ ​problem.​ ​If​ ​we​ ​could​ ​figure
out​ ​the​ ​centrality​ ​issue,​ ​we​ ​might​ ​also​ ​determine​ ​the​ ​answer​ ​to​ ​the​ ​mystery​ ​of
consciousness.​ ​In​ ​some​ ​networks,​ ​coordinated​ ​global​ ​activity​ ​happens​ ​simply​ ​as​ ​a​ ​function
of​ ​spreading​ ​activation​ ​that​ ​disperses​ ​throughout​ ​the​ ​system​ ​quickly​ ​but​ ​which​ ​can​ ​arise
from​ ​any​ ​part​ ​of​ ​it.

Hierarchical​ ​Networks​ ​and​ ​the​ ​Brain
Connections​ ​in​ ​hierarchical​ ​networks​​ ​are​ ​organized​ ​in​ ​different​ ​levels.
1. Simple​ ​cells​:​ ​cells​ ​in​ ​the​ ​primary​ ​visual​ ​cortex​ ​that​ ​code​ ​for​ ​oriented​ ​line​ ​segments
2. Complex​ ​cells​:​ ​cells​ ​in​ ​the​ ​visual​ ​system​ ​that​ ​code​ ​for​ ​an​ ​oriented​ ​line​ ​segment
moving​ ​in​ ​a​ ​particular​ ​direction
3. Hypercomplex​ ​cells​:​ ​cells​ ​in​ ​the​ ​visual​ ​system​ ​that​ ​code​ ​for​ ​angles​ ​(two​ ​conjoined
oriented​ ​line​ ​segments)​ ​moving​ ​in​ ​a​ ​particular​ ​direction
If​ ​we​ ​extrapolate​ ​up​ ​in​ ​the​ ​hierarchy,​ ​we​ ​end​ ​up​ ​with​ ​cells​ ​in​ ​the​ ​highest​ ​layers​ ​that​ ​code​ ​for
large​ ​complex​ ​objects​ ​(“grandmother​ ​cells”).​ ​The​ ​hierarchy​ ​allows​ ​the​ ​visual​ ​system​ ​to
employ​ ​a​ ​“divide-and-conquer”​ ​strategy​ ​where​ ​it​ ​breaks​ ​down​ ​the​ ​complex​ ​visual​ ​image​ ​into
microscopic​ ​features​ ​and​ ​then​ ​assembles​ ​these​ ​features​ ​into​ ​parts​ ​and​ ​then​ ​wholes​ ​that​ ​can
be​ ​recognized.​ ​Communication​ ​between​ ​levels​ ​in​ ​hierarchies​ ​can​ ​allow​ ​for​ ​the​ ​resolution​ ​of
ambiguity​ ​in​ ​visual​ ​perception.​ ​Information​ ​in​ ​the​ ​visual​ ​system​ ​appears​ ​to​ ​travel​ ​in​ ​2
directions.​ ​It​ ​goes​ ​nog​ ​only​ ​in​ ​a​ ​feed-forward​ ​direction​ ​from​ ​the​ ​eye​ ​to​ ​the​ ​brain​ ​but​ ​also​ ​in​ ​a
feedback​ ​direction​ ​from​ ​higher​ ​brain​ ​centers​ ​to​ ​lower​ ​centers.

Small-World​ ​Networks:​​ ​We​ ​can​ ​define​ ​a​ ​small-world​ ​network​​ ​as​ ​any​ ​network​ ​where​ ​one
can​ ​get​ ​from​ ​any​ ​single​ ​point​ ​to​ ​any​ ​other​ ​point​ ​in​ ​only​ ​a​ ​small​ ​number​ ​of​ ​steps​ ​even​ ​though
the​ ​total​ ​number​ ​of​ ​elements​ ​may​ ​be​ ​exceedingly​ ​large.
Ordered​ ​and​ ​Random​ ​Connections:​ ​Random​ ​networks​​ ​are​ ​networks​ ​where​ ​the​ ​connections
are​ ​entirely​ ​local​ ​and​ ​can,​ ​therefore,​ ​be​ ​both​ ​short​ ​and​ ​long​ ​distance.​ ​In​ ​an​ o ​ rdered
€5,14
Krijg toegang tot het volledige document:
Gekocht door 34 studenten

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Beoordelingen van geverifieerde kopers

Alle 7 reviews worden weergegeven
4 jaar geleden

4 jaar geleden

4 jaar geleden

5 jaar geleden

5 jaar geleden

7 jaar geleden

8 jaar geleden

4,3

7 beoordelingen

5
2
4
5
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
KenzaS Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
202
Lid sinds
9 jaar
Aantal volgers
128
Documenten
10
Laatst verkocht
10 maanden geleden

4,0

46 beoordelingen

5
17
4
18
3
9
2
0
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen