100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary - Stochastic Modeling period 1 (X_400646)

Beoordeling
-
Verkocht
1
Pagina's
20
Geüpload op
18-10-2023
Geschreven in
2023/2024

This summary includes all material of the first period that is needed for the midterm. The summary includes detailed examples on all topics.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
18 oktober 2023
Bestand laatst geupdate op
18 oktober 2023
Aantal pagina's
20
Geschreven in
2023/2024
Type
Samenvatting

Voorbeeld van de inhoud

Stochastic Modeling X 400646 period 1

Havikja van As

October 18, 2023


Contents
1 Introduction DTMC 2

2 Transient distribution, Hitting time and probabilities 4

3 Communicating classes 7

4 Long-term behaviour 9
4.1 Existence of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Costs 13

6 Exponential distribution 15
6.1 Memorylessness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 Total probability law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.3 Competing exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 The Poisson Process 17
7.1 Definition 1 via Exponential inter-arrivals . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.2 Definition 2 via Poisson increments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.3 The Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.3.1 Merging and splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.4 Merging and splitting for Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . 19




1

,1 Introduction DTMC
A Discreet Time Markov Chain (DTMC) on a countable state space S that is time-homogeneous.
• is a sequence of random variables {Xn , n = 0, 1, 2, . . . } with values in S,
– n is referred to as time
– Xn is referred to as the state at time n, Xn ∈ S
• which has the Markov property: for all n = 0, 1, 2, . . . , for all i, j, i1 , . . . , in−1 ∈ S,
P (Xn+1 = j|X0 = i0 , X1 = i1 , . . . , Xn−1 in−1 ,Xn = i) = P (Xn+1 = j|Xn = i)
i.e. the history does not influence the future (only the present can influence the future).
• and lastly whose one-step transition probabilities are the same at all times n, P (Xn+1 = j|Xn =
i) =: pij
– P := (pij , i, j ∈ S) is the transition matrix
– a transition diagram depicts the pij ’s on S

Example - machine reliability

Formulate a DTMC of the following situation. A machine can be up(1) or down(0),
• if up today then up tomorrow with a probability of 0.98
• if down today then up tomorrow with a probability of 0.97

Xn := state of the machine on day n
S = {0, 1}

P (X1 = 1|X0 = 1) = P (Up tomorrow given up today) = 0.98
P (X1 = 0|X0 = 1) = P (Down tomorrow given up today) = 1 − 0.98 = 0.02
P (X1 = 1|X0 = 0) = P (Up tomorrow given down today) = 0.97
P (X1 = 0|X0 = 0) = P (Down tomorrow given down today) = 1 − 0.97 = 0.03

The transition diagram:
0.97

0.03 0 1 0.98

0.02
The transition matrix

0.03 0.02
 
P =
0.97 0.98


The Markov property holds since it is implicitly given, that only the present influences the
transition probabilities.

Time-homogeneity holds since the value of n does not influence the transition probabilities.




2

,Example - Harry’s diner

Harry has dinner at either restaurant A or B. His choice depends on the previous two evenings:
• After . . . AA in A wp 0.2
• After . . . BA in A wp 0.4
• After . . . AB in B wp 0.5
• After . . . BB in B wp 0.3

Xn := The restaurant at evening n,
S = {A, B}

Time-homogeneity holds since the value of n does not influence the transition probabilities.

However, the Markov property does not hold because the history influences the future. We
solve this by formulating a new variable:

Yn := {Xn−1 , Xn } and S = {AA, AB, BA, BB}

Now the Markov property does apply since: P (Yn+1 = j|Y0 , Y1 , . . . , Yn ) = P (Yn+1 = j|Yn )

0.2 AA BB 0.3




0.5
0.8 0.7
0.4

0.6

AB BA

0.5




3

, 2 Transient distribution, Hitting time and probabilities
The probability to visit a sequence of states:
P (Xn = in , Xn−1 = in−1 , . . . , X1 = i1 ) = pin−2 in−1 pi1 i2 . . . pin−2 in−1 pin−1 in
Proof.



P (Xn = in , Xn−1 = in−1 , . . . , X1 = i1 ) =P (Xn = in |Xn−1 = in−1 , . . . , X2 = i2 , X1 = i1 , X0 = i0 )∗
P (Xn−1 = in−1 |Xn−2 = in−1 , . . . , X2 = i2 , X1 = i1 , X0 = i0 ) ∗ · · · ∗
P (X2 = i2 |X1 = i1 , X0 = i0 ) ∗ P (X1 = i1 |X0 = i0 )
= P (Xn = in |Xn−1 = in−1 ) ∗ P (Xn−1 = in−1 |Xn−2 = in−2 ) ∗ · · · ∗
P (X2 = i2 |X1 = i1 ) ∗ P (X1 = i1 |X0 = i0 )
= pin−2 in−1 pi1 i2 . . . pin−2 in−1 pin−1 in

n-step transition probabilities:
(n)
pij := P (Xn = j|X0 = i)
Time-homogeneity also applies for n-step transition probabilities, thus:
(n)
P (Xm+n = j|Xm = i) = pij , same for all m.
(n)
Theorem 2.1. The matrix (pij : i, j ∈ S) of n-step transition probabilities is equal to (P n )ij .
The transient distribution at time n is the distribution of Xn , with the following notation:
(n)
πj := P (Xn = j),
(n)
π (n) := rowvector(πj : j ∈ S)


The distribution of π (0) is called the initial distribution of the Markov chain.
Theorem 2.2. The transient distribution at time n is give by π (n) = π (0) P n

Example - machine reliability

• if the machine is up today, what is the probability that it will be up three days from now?
(3)
P (X3 = 1|X0 = 1) = p11 = 0.979798

• if today the machine is up with probability 0.3, what are the chances it will be up on day 3
from now and what is the probability it will be down on day 3 from now?

π (0) = (0.7; 0.3)

π (3) = (P (X3 = 0), P (X3 = 1))
= π (0) P 3
= (0.7 ∗ 0.020203 + 0.3 ∗ 0.020202; 0.7 ∗ 0.979797 + 0.3 ∗ 0.979798)
= (0.0202027; 0.9797973)




4
€10,48
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
havikjavanas

Maak kennis met de verkoper

Seller avatar
havikjavanas Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
2 jaar
Aantal volgers
1
Documenten
2
Laatst verkocht
2 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen