100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Lecture notes and book summary - Statistics 2 - 2023 - Grade 8.5

Beoordeling
-
Verkocht
2
Pagina's
20
Geüpload op
16-10-2023
Geschreven in
2023/2024

Notes on the lectures from the course (2023) Statistics 2. Includes all lectures and readings











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
16 oktober 2023
Aantal pagina's
20
Geschreven in
2023/2024
Type
College aantekeningen
Docent(en)
Dr. j.a. robison
Bevat
Alle colleges

Voorbeeld van de inhoud

Notes – Statistics 2 2023

Lecture 01: 04/09/2023
Bivariate Relationships between Continuous Variables


Covariance

- Variance: how much do observations deviate from the central tendency?
- Covariance: how much do variables vary together?
- When one variable changes, how does this affect the other variable?
∑(𝑥𝑖 − 𝑥̅ ) (𝑦𝑖 − 𝑦̅)
𝑐𝑜𝑣(𝑥, 𝑦) =
𝑛−1
- Covariance does not have a set range (it depends on the variable’s scale)
- Covariance is an unstandardised measure, so we cannot compare when variables have very different
scales.
- Covariance statistic depends on the variance of x and y.
- We therefore use Correlation Coefficients: standardised covariance statistic.
- Or use Linear regression models: not standardised, but with other advantages.



Correlation coefficient, which always takes values between -1 and 1, describes the strength of the linear
relationship between two variables. We denote the correlation by 𝑅.

- The correlation coefficient is a standardised measure of the linear association between two continuous
variables. What is the direction (positive or negative) of the relationship?

- r = 1 -> a perfect positive linear relationship. All observations fall on a positively sloped line.
- r = 0 -> no linear relationship.
- r = -1 -> a perfect negative linear relationship. All observations fall on a negatively sloped line.
- Nonlinear trends, even when strong, sometimes produce correlations that do not reflect the strength.
- Always plot the data to see the distribution of the data.

- Interpreting the correlation
- r < |0.1| : very small
- |0.1| <= |0.3| : small
- |0.3| <= |0.5| : moderate
- r > |0.5|: large

- Correlation does not imply causation. Even if two variables have a strong correlation, it does not mean
that one causes the other.

Person’s r correlation
𝑐𝑜𝑣(𝑥, 𝑦)
𝑟=
𝑆𝐷(𝑥) ∗ 𝑆𝐷(𝑦)
Assumptions

- Interval-ratio (continuous) variables.
- Linear relationship between variables.

Reporting correlations:

- Higher levels of economic inequality are associated with lower levels of electoral democracy (r = -0.35).
This association is moderate in size and statistically significant (p < 0.01).

,Notes – Statistics 2 2023

Spearman’s rho correlation

- Measures the strength and direction of association between two ranked variables.
- Primarily used for discrete ordinal variables and when assumptions of Person’s r are violated.


Sample vs. Population

- Population
- Observations of relevance for our research questions.
- Sample
- Selection of observations we analyse.

We use our sample to make inferences about the population.



Linear regression is the statistical method for fitting a line to data where the relationship between two variables,
x and y, can be modelled by a straight line with some error.

- Prediction line telling us how to expect the mean/ average value of Y to change when X changes by one
unit.

A statistical model is an abstraction/ simplification that may be useful for answering our questions.

- Linear regression is a method that allows researchers to summarise how predictions or average values of
an outcome vary across observations defined by a set of predictors.
- What is our best guess about one variable if we know what the other variable equals?

𝑦𝑖 = 𝑏0 + 𝑏1 ∗ 𝑥𝑖 + 𝜖𝑖
The values 𝑏0 and 𝑏1 represent the model’s parameters, and the error is represented by 𝜖.

- i represents the individual observation.
- 𝑏0 represents the intercept/ constant term (the average value of Y we expect to observe when X = 0).
- 𝑏1 represents the slope (how we expect the mean of Y to change when X increases by one unit).

- The DV needs to be a continuous variable while the IV can have any form.

- The data fall around a straight line, even if none of the observations fall exactly on the line.

- Dependent variable
- What we want to predict
- Common labels: Y, DV, outcome variable
- Independent variable
- What we are using to predict the DV
- Common labels: X, IV, predictor variable

Main purposes of regression

- Making predictions including to new data.
- Describing relationships.
- Studying causal relationships: causal inference.




Extrapolation describes the fallacy of applying a model estimate to values outside of the realm of the original
data. It can be unreliable, as it assumes that the linear relationship continues indefinitely.

, Notes – Statistics 2 2023

Lecture 02: 11/09/2023
Bivariate Linear Regression


Ordinary Least squares (OLS) regression

Least squares regression aims to find the best-fitting linear relationship by minimising the sum of squared
residuals.

𝑦𝑖 = 𝑏0 + 𝑏1 ∗ 𝑥 + 𝜖𝑖
Error/ Residual

- e -> actual value of Y for observation i and the model’s prediction for that observation.
- Represents variation in Y not explained by our model.
- Positive error/ residual -> the actual value is higher than our predicted value (above the regression line).
- Negative error/ residual -> the actual value is lower than our predicted value (below the regression line).

Reporting OLS regression:

- A discussion about the direction of the relationship (positive or negative coefficient).
- Higher values of X are associated with higher/ lower values of Y.
- Name the value of the effect.
- Based on this model, we expect Y to increase/ decrease by … (value) on average with each one
unit increase in X.
- If it is a bivariate OLS regression: we only interpret the intercept if the predictor variable is scaled such
that the value of 0 refers to a particular category of relevance -> then the intercept is the mean of Y.
- A conclusion about the null hypothesis with reference to the p-value or the confidence interval.
- This association is (not) statistically significant (p ...).



Residuals are the leftover variation in the data after accounting for the model fit:

𝐷𝑎𝑡𝑎 = 𝐹𝑖𝑡 + 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
- Each observation has a residual.
- Residuals can be used to detect outliers (large residuals show us the outliers).
- The sum of residuals in a well-fitted linear regression model should ideally be close to 0.
- The model is not systematically overestimating or underestimating the observed values.



First, we need to make predictions of certain points. Then we need to subtract the actual observed value.

Residual = Observed Value − Predicted Value



Prediction for example point (77.0, 85.3): 𝑦̂ = 41 + 0.59𝑥 = 41 + 0.59 ∗ 77.0 = 86.4

𝑒 = 𝑦𝑥 − 𝑦̂𝑥 = 85.3 − 86.4 = −1.1



Residuals are helpful in evaluating how well a linear model fits a data set. Residuals can be displayed in a residual
plot where the vertical coordinate is the value of the residual.

- A residual plot where the residuals are around zero indicates a good model fit.
- Other patterns (curves, funnels) in the residual plot can suggest violations of the regression assumption.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
teaksgardens-0r Universiteit Leiden
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
66
Lid sinds
2 jaar
Aantal volgers
22
Documenten
22
Laatst verkocht
1 week geleden

4,4

14 beoordelingen

5
8
4
4
3
2
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen