100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Lecture Summary Data Mining for Business and Government

Beoordeling
-
Verkocht
-
Pagina's
12
Geüpload op
11-10-2023
Geschreven in
2023/2024

Summary of the most important themes of the lectures of Data Mining for Government and Business. This summary clearly describes all the concepts explained in the lectures. Clearly marking where a new week starts and an old week ends. Bullet point separated summary.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
11 oktober 2023
Aantal pagina's
12
Geschreven in
2023/2024
Type
Samenvatting

Voorbeeld van de inhoud

Week 1
The provided text appears to be an excerpt or outline of a course syllabus or lecture notes
on the topic of data mining. Here's a summary of the key points covered in this material:

Course Overview:
- The course is structured to include theoretical lectures and practical sessions, with a focus
on both theoretical knowledge and hands-on coding skills.
- Course materials, including lecture content, will be published weekly before the theory
lecture.
- Evaluation for the course will be based on a final exam, which is written, on-campus, and
closed-book. The exam consists of multiple-choice questions carrying equal weight.

Remark on Final Exam:
- The final exam will include code-related questions, particularly in Python.
- Weekly quizzes with multiple-choice questions resembling those in the final exam will be
provided on the Canvas platform. These quizzes do not count towards the final grade but are
encouraged for practice.

Additional Information:
- Correct answers and justifications for quizzes will be released on Fridays.
- The course will include reading material consisting of selected book chapters, which is
optional but highly recommended to enhance understanding of theoretical concepts
discussed in lectures.

Getting Started: Pattern Classification:
- The course introduces the concept of pattern classification, where numerical variables
(features) are used to predict outcomes (decision classes). This is a multi-class problem.
- The goal in pattern classification is to build models that can generalize well beyond
historical training data.

Dealing with New Instances:
- When encountering new instances, the course will cover how to apply the trained model to
make predictions.
- The course will discuss topics like handling missing values, computing
correlations/associations between features, and encoding categorical features. These are
part of pre-processing and exploratory data analysis steps.

Handling Missing Values:
- Missing values in data can arise from various reasons, and it's crucial to address them
before building machine learning or data mining models.
- Strategies for handling missing values include removing the feature, removing instances, or
imputing missing values using techniques such as mean, median, mode, or machine learning
models.

Autoencoders for Imputing Missing Values:
- Autoencoders, which are deep neural networks with encoder and decoder blocks, can be
used for imputing missing values in data through unsupervised learning.

, Feature Scaling:
- Feature scaling techniques like normalization and standardization are discussed to bring
features to similar scales, preventing issues with extreme values.

Feature Interaction:
- Methods for measuring correlation between numerical features and association between
categorical features are discussed. Pearson's correlation coefficient is introduced for
numerical features, and the chi-squared measure is mentioned for categorical features.

Encoding Categorical Features:
- Strategies for encoding categorical features, including label encoding for ordinal
relationships and one-hot encoding for nominal features, are explained.

Dealing with Class Imbalance:
- Class imbalance in classification problems is addressed, and strategies like random instance
selection, creating synthetic instances (SMOTE), and associated considerations are discussed.

Course Focus:
- The course is primarily oriented toward data mining for business and governance
applications.

This material outlines the structure and content of the course, highlighting the importance
of theoretical knowledge and practical skills in data mining, along with specific techniques
and strategies used in data preprocessing, feature handling, and class imbalance
management.

Week 2
The material you provided seems to be from a course on pattern classification and data
mining for business and governance, possibly a lecture or presentation by Dr. Gonzalo
Nápoles. Here's a summary of the key points covered in this material:

1. Classification Problem : The material discusses a classification problem where the goal is
to predict outcomes based on four categorical features. This is a binary classification
problem with two possible outcomes or decision classes.

2. Data : The provided data includes features like Outlook, Temperature, Humidity, Windy,
and Play, along with corresponding outcomes for training the classification model.

3. Approaches to Classification :
- Rule-Based Learning : This approach involves creating a set of rules based on features
and their values to make predictions. Decision trees are commonly used for this purpose.
- Bayesian Learning : Bayesian learning utilizes probabilities to make predictions, assuming
independence among features. Naïve Bayes is a popular algorithm in this category.
- Lazy Learning : Lazy learning relies on similarity between instances to make predictions.
The k-Nearest Neighbors (k-NN) algorithm is an example.
€4,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
terhaarfloris

Maak kennis met de verkoper

Seller avatar
terhaarfloris Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
3 jaar
Aantal volgers
0
Documenten
1
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen