100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Project 3A

Beoordeling
4,0
(1)
Verkocht
-
Pagina's
11
Geüpload op
25-08-2017
Geschreven in
2016/2017

Comprehensive summary Psychology, E & D, Course 3.4, Learning and Instruction in Schools, Literature Project 3A









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
25 augustus 2017
Aantal pagina's
11
Geschreven in
2016/2017
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Project 3
Part 1
Owen, E., & Sweller, J. (1985). What do students learn while solving mathematics problems?. Journal
of Educational Psychology, 77, 272–284. doi:10.1037/0022-0663.77.3.272
Novice-Expert Distinctions in Problem Solving
Experts work forward from the problem givens to the problem goal. Choose equations that contain
only one unknown, thus allowing immediate calculation of that unknown. This procedure repeated
until the desired unknown was obtained. <> Novices using means-ends analysis work backward from
the goal to the givens. Choose an equation containing the goal. If a value for the goal cannot be
calculated because the equation contain other unknowns, these become subgoals, and the process
repeated until a value for an unknown can be calculated. The process can then be reversed allowing
problem solution.
Experts employ schemata. Schema: a cognitive structure allowing a problem solver to
categorize a problem and then to indicate the most appropriate moves for problems of that class. A
forward-working strategy. Novices, not having the required schemata, must use means-ends analysis
to solve the problems.

Hypothesis: the use of means-ends analysis retards the assimilation of mathematical principles as a
consequence of retarding the acquisition of schemata.

Experiment 1
Students presented with goal-modified problems would normally calculate the value of more
unknowns in each problem than would students presented with conventional problems. Groups
matched with respect to time spent on problem-solving activity.
Purpose: test the effects of reduced goal specificity on the assimilation of mathematical
principles. Principles: the trigonometric ratios of sine, cosine, and tangent. The ability to use
mathematical principles develops over some time. Possible reason: mathematical principles are
integral parts of schemata. Reducing the use of means-ends analysis by reducing goal specificity
should result in more rapid schema acquisition and increased knowledge of mathematical principles.
Primary measure: errors in the use of mathematical principles. If knowledge of problem-
solving operators develops in conjunction with schemata, then training on goal-modified problems
rather than on conventional ones should reduce errors on problems subsequent to training.

Method
Subjects: 20 10th-grade high school students who had been exposed to some trigonometry when in
the 9th grade.
Procedure. Instruction period to familiarize students with the basic principles of trigonometry. ->
Pretest to observe solution strategies and to determine their knowledge of trigonometric ratios. ->
Schema acquisition period during which each group was presented with problems of differing goal
specificity. -> Posttest using the same measures as the pretest to observe any differential changes
occurring since the schema acquisition period.
Experimental design and problem types. Two groups: the goal group was presented with
conventional problems; the no-goal group was presented with goal-modified problems. Core
Experiment 1: collection of schema acquisition problems that differed for each group with respect to
goal specificity.
Goal group: subjects were required to find the length of AD or BD. No-goal group: subjects
were required to find all the unknown sides in each of the 16 diagrams presented to the goal group.

Results and Discussion
Solution strategy on two-triangle problems: backward or forward from the verbal protocols. On

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
5 jaar geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
MichelleEUR Erasmus Universiteit Rotterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
156
Lid sinds
8 jaar
Aantal volgers
108
Documenten
137
Laatst verkocht
10 maanden geleden

3,5

32 beoordelingen

5
3
4
11
3
16
2
2
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen