100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Applied Microeconometrics (FEM11087)

Beoordeling
-
Verkocht
7
Pagina's
111
Geüpload op
19-09-2023
Geschreven in
2022/2023

Aantekeningen van de kennisclips, colleges en oefen colleges van AME.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
19 september 2023
Aantal pagina's
111
Geschreven in
2022/2023
Type
Samenvatting

Voorbeeld van de inhoud

fMODULE 1: LINEAR REGRESSION MODELS

Introduction to empirical methods: linear regression models
1. Introduction: linear regression model
- Empirical analysis
> Use data
Test a theory
Estimate relationship between variables
> First step is to clearly define your research question
Economic model
Intuitive and less formal reasoning (observation & existing scientific evidence)

- Single regression model
> We have two variables, y and x
We are interested in ‘explaining y in terms of x’ or ‘how y varies with changes in x’

For example: House prices and average income in a neighbourhood
- How does the average house prices in a neighbourhood changes when income changes




Positive association. Formula:

- Ceteris paribus relationship




> Simple linear regression model:
> Ceteris paribus = other factors held fixed

> If the factors in u are held fixed:
- Zero conditional mean assumption (gives another useful interpretation)
E(u|x) = E(u) = 0




For example:
What is the expected value of y, for a given value of x ^^




1

,Keep asking yourself…
- Can we draw ceteris paribus conclusions about how x affects y in our example?
> We need to assume E(u|x) = E(u) = 0
>> Zero conditional mean assumption
>> What does it mean in our example?
>>> Assume u is the same as amenities
>>> Then, amenities are the same regardless of average income
*E(amenities | income = 10,000) = E(amenities | income = 100,000)
Means: amenities (voorzieningen) is same regardless incomes
* If we think that the amount and quality of amenities is different in
richer than in poorer neighbourhoods then previous assumption
does not hold
* We cannot observe u, so we have no way of knowing whether or not
amenities are the same for all levels of x

2. Estimation and interpretation
- Given graph: each dot is a neighbourhood, positively related

- Estimate by ordinary least square estimates (OLS)

> Select a random sample of the population of interest




Using stata to add the values




> In stata
Income was in 1000 €, when average income increases by 1000, the average
houseprice increases by about 16000 €, ceteris paribus
Output tell us that expected houseprice = equal to -95000 when the income is 0
Does not make sense, cause we do not have negative prices but that is
cause income can not be 0 (> this way good interpretation)




2

,- Multiple regression model
> Difficult to draw ceteris paribus conclusions using simple regression analysis




is 2nd cp? Depends; if error is not correlated

> Multiple regression model:
> Multiple regression analysis allows us to control for many other factors that
simultaneously affect the dependent variable (better predictions also)

3. OLS assumptions for unbiasedness

- Unbiasedness of OLS = Expected value of estimator = population parameter
- Assumptions needed:
MLR1: Linear in parameters
MLR2: Random sampling
MLR3: No perfect collinearity
MLR4: Zero conditional mean, i.e., E(u|x)=0
> Assumption MLR1: Linearity in parameters




> Assumption MLR2: Random sampling
* We have a random sample of size n, following the population model
* If sample is not random, selection bias
> Assumption MLR3: No perfect collinearity = no perfect linear relationships
* In the sample (and therefore in the population):
None of the independent variables is constant, and
There are no exact linear relationships among the independent variables
Example:




3

, Perfect collinearity
- Estimation simply does not work
- Some softwares give error message and no/strange results
- Stata drops one variable automatically/arbitrarily and then estimates a
model that does not suffer from this problem:
But it may not be the variable you would prefer to drop, so i) start by
defining model properly and, only then, ii) estimate it
Imperfect collinearity
- Model works but is problematic, imprecise estimates
- Beware of x’s with high correlation
- Symptoms of imperfect collinearity (for example, between x1 & x2):
Big F-stat (x1, x2 jointly significant) but
small t-statistics (for example x1 and x2 individually insignificant)
> Assumption MLR4: Zero conditional mean (important and complicated)

Next step is to do hypothesis testing: do we need additional assumptions to do inference?
YES:

4. Assumptions for inference (gevolgtrekking/conclusie)
- Inference - hypothesis testing
> We make two additional assumptions:
MLR5: Homoskedasticity
MLR6: Normality
> MLR1 - MLR6: OLS estimator is the minimum variance unbiased estimator
- Assumption MLR5: homoskedasticity
> Variance of error term is the same regardless of the values of the independent

Variables:
> Importance of error term same for all individuals
> Magnitude of uncertainty in the outcome of y is the same at all levels of x’s
Example: in which figure is the homoskedasticy assumption most likely to be satisfied?




B less variation for small x, more for large x
So in figure A the assumption is most likely to be satisfied
> If assumption does not hold, then we have heteroskedasticity:


> In case of heteroskedasticity:




* SE and statistics used for inference can easily be adjusted
→ ALWAYS use heteroskedasticity-robust standard errors




4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
lauraakkermans2000 Erasmus Universiteit Rotterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
20
Lid sinds
5 jaar
Aantal volgers
10
Documenten
4
Laatst verkocht
2 maanden geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen