100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Customer Analytics Summary

Beoordeling
5,0
(1)
Verkocht
20
Pagina's
64
Geüpload op
26-06-2017
Geschreven in
2016/2017

Hereby my summery of Customer Analytics in semester 4 of the schoolyear . The seven lectures and weblectures are discussed in this summary in English.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
26 juni 2017
Aantal pagina's
64
Geschreven in
2016/2017
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Summary Customer Analytics 2017




Period Semester 4 of 2016-2017
Lecturer Dr. G. Knox
Summary made by Mirte van Schaijk
Including • 7 lectures given by Dr. G Knox
• The weblectures
Excluding • 2 guest lectures
Version 2

,SUMMARY CUSTOMER ANALYTICS 2017 STUVIA


Index
Lecture 1 Introduction ........................................................................................................................ 3
Lecture 1 Test and Roll Decisions ....................................................................................................... 4
1 Mailing to all customers (No test) Case E-Beer Mailing ............................................................. 4
2 Untargeted campaign: all-or-nothing Case E-Beer Mailing......................................................... 5
3 Targeted campaign ...................................................................................................................... 6
Lecture 2 Recency-Frequency-Monetary (RFM) analysis ................................................................... 7
1 RAW Use of Recency and Frequency........................................................................................... 7
2 Explaining response rate by RFM .............................................................................................. 10
Lecture 3 Logistic Regression ........................................................................................................... 15
Lecture 3 Lift Curves and the Gini .................................................................................................... 22
Lecture 4 Decision Trees................................................................................................................... 25
1 Motivation ................................................................................................................................. 25
2 Algorithm Growing bushes & trees ......................................................................................... 26
3 Decision trees in SPSS ................................................................................................................ 27
4 Interpreting Results ................................................................................................................... 29
Lecture 4 Overfitting and Cross-validation ....................................................................................... 33
1 Overfitting ................................................................................................................................. 33
2 Cross-validation ......................................................................................................................... 35
Lecture 5 Introduction to CLV........................................................................................................... 38
1 Case 1: CLV for new customers ................................................................................................. 40
2 Case 2: RLV: residual lifetime value........................................................................................... 42
3 Case 3 CLV, profit comes at the end.......................................................................................... 43
4 Managerial issue........................................................................................................................ 44
Lecture 6 Next level CLV calculations ............................................................................................... 46
1 Introduction to non-constant retention rate ............................................................................ 46
2 Building a better model BG Model .......................................................................................... 49
3 Using BG Model for CLV/RLV ..................................................................................................... 52
4 How to estimate parameters a and b........................................................................................ 54
Lecture 7 CLV in a non-contractual setting ...................................................................................... 59
1 Non-contractual settings ........................................................................................................... 59
2 Model 1 Parameters: p and q ................................................................................................... 60
3 Model 2 BGBB........................................................................................................................... 62
4 CLV and RLV under BG/BB ......................................................................................................... 63




Page 2 of 64
MADE BY: MIRTE VAN SCHAIJK

, SUMMARY CUSTOMER ANALYTICS 2017 STUVIA


Lecture 1 Introduction
Date 11 April 2017
Reading Chapter 9

Introduction - What do these companies know about you?
Companies such as T-Mobile, Facebook, Google, Amazon, ING, Bol.com, Netflix, etc have a lot of
information about you.  a lot of data.

Example How target figured out a teen girl was pregnant before her father did?
A woman search for two different products. These products “say” that this is probably a
woman who is pregnant  start advertise for coupons. Even before her father knew it.

Free service If something is free for you, you are not the customer
Problems with If your ad before a youtube video, it could be before some content you do not
targeting agree with (racism).

Introduction – The age of big data
• Massive customer data sets available now. But same old questions; whom do I target and
how? Which customers are the most valuable?
• Companies are drowning in data but starving for insights. Companies have a lot of data
about you, but that doesn’t mean they always have the knowledge or actionable insight to
do something with it.

Introduction – Customer Analytics
The aim of this course is to introduce you to methods to better understand your customers.

Customer Analytics Using (simple) models
and customer data to
make smarte
rmarketing deciscions.


Introduction – Scheme of lectures
Lecture 1-4 Lecture 5-8
• “Next period analytics” • “Long-term analytics
• Test marketing: why test? How large • Customer lifetime value (CLV): who are
should the test be? the most valuable customers: how do
you calculate the value of the firm of
the customers over his or her lifecycle?
• Models for selecting customer to • How does the portfolio of customers
target: Which customers should be change over time as customers drop
selected for e.g., acquisition, retention, out?
cross-selling, direct mailing? • Customer life time value (CE): What is
the value of a firm’s entire customer
base, i.e.: customer equity. CE = sum of
customer value.




Page 3 of 64
MADE BY: MIRTE VAN SCHAIJK

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
7 jaar geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Mirtevanschaijk Tilburg University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
190
Lid sinds
9 jaar
Aantal volgers
151
Documenten
18
Laatst verkocht
1 jaar geleden

3,8

26 beoordelingen

5
5
4
13
3
5
2
3
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen