100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

SOLUTION MANUAL for Introduction to Probability Models 12th Edition by Ross Sheldon. | All Chapters 1-12

Beoordeling
-
Verkocht
-
Pagina's
205
Cijfer
A+
Geüpload op
04-09-2023
Geschreven in
2023/2024

SOLUTION MANUAL for Introduction to Probability Models 12th Edition by Ross Sheldon. ISBN 3476, ISBN-13 978-9.TABLE OF CONTENTS_ 1. Introduction to Probability Theory 2. Random Variables 3. Conditional Probability and Conditional Expectation 4. Markov Chains 5. The Exponential Distribution and the Poisson Process 6. Continuous-Time Markov Chains 7. Renewal Theory and Its Applications 8. Queueing Theory 9. Reliability Theory 10. Brownian Motion and Stationary Processes 11. Simulation 12. Coupling

Meer zien Lees minder
Instelling
Introduction To Probability Models 12th Edition
Vak
Introduction to Probability Models 12th Edition











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Introduction to Probability Models 12th Edition
Vak
Introduction to Probability Models 12th Edition

Documentinformatie

Geüpload op
4 september 2023
Aantal pagina's
205
Geschreven in
2023/2024
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

, Solutions Manual For
Introduction to Probability Models 12th
Edition By Sheldon M. Ross




Chapter 1
1. S = {(R, R), (R, G), (R, B), (G, R), (G, G), (G, B), (B, R), (B, G), (B, B)}
The probability of each point in S is 1/9.
2. S = {(R, G), (R, B), (G, R), (G, B), (B, R), (B, G)}
3. S = {(e1 , e2 , . . . , en ), n ≥ 2} where ei ∈(heads, tails}. In addition, en = en−1 =
heads and for i = 1, . . . , n − 2 if ei = heads, then ei+1 = tails.
P{4 tosses} = P{(t, t, h, h)} + P{(h, t, h, h)}
 4
1 1
=2 =
2 8
4. (a) F(E ∪ G)c = F E c G c
(b) E F G c
(c) E ∪ F ∪ G
(d) E F ∪ E G ∪ F G
(e) E F G
(f) (E ∪ F ∪ G)c = E c F c G c
(g) (E F)c (E G)c (F G)c
(h) (E F G)c
5. 43 . If he wins, he only wins $1, while if he loses, he loses $3.
6. If E(F ∪ G) occurs, then E occurs and either F or G occur; therefore, either E F
or E G occurs and so
E(F ∪ G) ⊂ E F ∪ E G

,2 Introduction to Probability Models


Similarly, if E F ∪ E G occurs, then either E F or E G occurs. Thus, E occurs and
either F or G occurs; and so E(F ∪ G) occurs. Hence,
E F ∪ E G ⊂ E(F ∪ G)
which together with the reverse inequality proves the result.
7. If (E ∪ F)c occurs, then E ∪ F does not occur, and so E does not occur (and so E c
does); F does not occur (and so F c does) and thus E c and F c both occur. Hence,
(E ∪ F)c ⊂ E c F c
If E c F c occurs, then E c occurs (and so E does not), and F c occurs (and so F does
not). Hence, neither E or F occurs and thus (E ∪ F)c does. Thus,
E c F c ⊂ (E ∪ F)c
and the result follows.
8. 1 ≥ P(E ∪ F) = P(E) + P(F) − P(E F)
9. F = E ∪ F E c , implying since E and F E c are disjoint that P(F) = P(E) +
P(F E)c .
10. Either by induction or use
n
∪ E i = E 1 ∪ E 1c E 2 ∪ E 1c E 2c E 3 ∪ · · · ∪ E 1c · · · E n−1
c
En
1

and as each of the terms on the right side are mutually exclusive:
P( ∪ E i ) = P(E 1 ) + P(E 1c E 2 ) + P(E 1c E 2c E 3 ) + · · ·
i
+ P(E 1c · · · E n−1
c
En )
≤ P(E 1 ) + P(E 2 ) + · · · + P(E n ) (why?)

i−1
36 , i = 2, . . . , 7
11. P{sum is i} = 13−i
36 ,i = 8, . . . , 12
12. Either use hint or condition on initial outcome as:
P{E before F}
= P{E before F|initial outcome is E}P(E)
+ P{E before F|initial outcome is F}P(F)
+ P{E before F|initial outcome neither E or F}[1 − P(E) − P(F)]
= 1 · P(E) + 0 · P(F) + P{E before F}
= [1 − P(E) − P(F)]
P(E)
Therefore, P{E before F} = P(E)+P(F)
13. Condition an initial toss
12

P{win} = P{win|throw i}P{throw i}
i=2

, Instructor’s Manual to Accompany 3


Now,
P{win|throw i} = P{i before 7}


⎪ 0 i = 2, 12

⎪ i −1

⎨ i = 3, . . . , 6
= 5+1

⎪ 1 i = 7, 11

⎪ 13 − i

⎩ i = 8, . . . , 10
19 − 1
where above is obtained by using Problems 11 and 12.
P{win} ≈ .49.


14. P{ A wins} = P{ A wins on (2n + 1)st toss}
n=0
∞
= (1 − P)2n P
n=0


=P [(1 − P)2 ]n
n=0
1
=P
1 − (1 − P)2
P
=
2P − P 2
1
=
2− P
P{B wins} = 1 − P{ A wins}
1− P
=
2− P
16. P(E ∪ F) = P(E ∪ F E c )
= P(E) + P(F E c )
since E and F E c are disjoint. Also,
P(E) = P(F E ∪ F E c )
= P(F E) + P(F E c ) by disjointness
Hence,
P(E ∪ F) = P(E) + P(F) − P(E F)
17. Prob{end} = 1 − Prob{continue}
= 1 − P({H, H, H } ∪ {T, T, T })
= 1 − [Prob(H, H, H ) + Prob(T, T, T )].

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
AcademiContent Aalborg University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
3093
Lid sinds
6 jaar
Aantal volgers
2133
Documenten
1226
Laatst verkocht
12 uur geleden

4,0

389 beoordelingen

5
207
4
84
3
38
2
17
1
43

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen