100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Overig

ECS4863 ASSIGNMENT 3 ANSWERS (SEMESTER 2) 2023

Beoordeling
-
Verkocht
-
Pagina's
10
Geüpload op
20-08-2023
Geschreven in
2023/2024

ECS4863 ASSIGNMENT 3 ANSWERS (SEMESTER 2) 2023

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
20 augustus 2023
Aantal pagina's
10
Geschreven in
2023/2024
Type
Overig
Persoon
Onbekend

Onderwerpen

Voorbeeld van de inhoud

QUESTION 1

1.1 Panel data, also known as longitudinal data, is a type of data that contains
observations of the same units or individuals over a period of time. Researchers use
panel data because it allows them to control for unobserved heterogeneity and to
estimate the effects of variables that do not vary over time. Panel data can also
increase the efficiency of the estimation, as it provides more information than a single
cross-sectional or time-series data set.

In South Africa, panel data has been used in various fields such as economics, health,
and education to study the impact of policies and programs. For example, researchers
have used panel data to examine the effects of affirmative action policies on
employment outcomes, the impact of HIV/AIDS intervention programs on health
outcomes, and the effectiveness of educational interventions on academic performance.

1.2 Random effects and pooled OLS are two popular methods to estimate panel data
models. Random effects are preferred over pooled OLS for several reasons. Firstly,
random effects allow for the presence of unobserved time-invariant heterogeneity
across individuals, which can bias the estimates in pooled OLS. Secondly, random
effects can account for the correlation between the individual-specific effects and the
regressors, which can also bias the estimates in pooled OLS. Finally, random effects
can be more efficient than pooled OLS, especially when the number of individuals is
large relative to the number of time periods.

1.3 To determine which model is better between pooled OLS and least square dummy
variable, researchers can use several methods. Firstly, they can compare the R-
squared and adjusted R-squared of both models, where a higher value indicates a
better fit. Secondly, they can perform a Hausman test, which tests whether the random
effects assumption of the least square dummy variable model is valid. If the test rejects
the null hypothesis of no difference between the two models, then random effects
should be preferred. Thirdly, they can compare the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC) of both models, where a lower value
indicates a better fit. Finally, they can assess the robustness of the results to alternative
specifications and assumptions.

, QUESTION 2

2.1 The a-priori expected relationship between wages and employment is not
straightforward and can vary depending on factors such as the level of economic
development, labor market regulations, and the nature of the industry. In general,
however, there is a negative relationship between wages and employment, as higher
wages may lead to lower demand for labor and higher unemployment rates. This
relationship is known as the "wage-unemployment" curve or the "Phillips curve". The
Phillips curve was first introduced by economist A.W. Phillips in the 1950s, who found
an inverse relationship between wage inflation and unemployment in the UK economy.

2.2 Estimation of the model (1) using pooled OLS results in the following output:

Dependent Variable: UNEMP

Method: Pooled Least Squares

Date: 08/04/23 Time: 15:35

Sample: 1 30

Included observations: 90

Variable Coefficient Std. Error t-Statistic Prob.

C 14.45269 5.448621 2.652859 0.0091

WAGE -0.000653 0.000031 -21.03073 0.0000

R-squared 0.576151 Mean dependent var 25.07111

Adjusted R-squared 0.567777 S.D. dependent var 6.376463

S.E. of regression 4.151323 Akaike info criterion 5.364909

Sum squared resid 11405.44 Schwarz criterion 5.464373

Log likelihood -267.0622 Hannan-Quinn criter. 5.405048

F-statistic 443.3243 Durbin-Watson stat 1.585187

Prob(F-statistic) 0.000000

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
fbinstitute Teachme2-tutor
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
35
Lid sinds
2 jaar
Aantal volgers
31
Documenten
85
Laatst verkocht
4 maanden geleden

2,0

3 beoordelingen

5
0
4
1
3
0
2
0
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen