100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Sumario Resumen Completo Asignatura Algébra

Beoordeling
-
Verkocht
-
Pagina's
21
Geüpload op
19-08-2023
Geschreven in
2022/2023

Se trata de un resumen realizado a través de todas las presentaciones proporcionadas en la asignatura de Álgebra de la Universidad de Deusto. Con estos apuntes logré sacar un 9,5 y matrícula de honor. Aunque haya un salto del tema 2 al tema 5, no hay que preocuparse, esto sucede ya que el tema 3 y 4 no eran evaluables.

Meer zien Lees minder
Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
19 augustus 2023
Aantal pagina's
21
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Tema 1: conjuntos
conjunto: Colección de objetos (elementos).
→ Los elementos pertenecen al conjunto.
→ El conjunto contiene los elementos.
→ El conjunto está determinado por sus elementos.


𝑥 ∈𝐴 𝑥 ∉ 𝐴
1 ∈ 𝐴 ( 1 pertenece a A )
4 ∉ 𝐴 ( 4 no pertenece a A )


1. representación
- Representación por extensión: para conjuntos de pocos elementos, con
comas y entre llaves.
ej: 𝐴 = {1, 2, 3} 𝐴 = {2, 1, 3}
𝐴 = {3, 2, 3, 1}
- Representación por compresión:
𝐶 = {𝑥 ∈ 𝑈 | "𝑥 𝑡𝑖𝑒𝑛𝑒 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑑𝑎 𝑝𝑟𝑜𝑝𝑖𝑒𝑑𝑎𝑑"}
ej: 𝐴 = {𝑥 ∈ 𝑁 | 𝑥 ≤ 3}
𝐵 = {𝑥 ∈ 𝑁 | 𝑥 ≥ 3}
Conjunto vacío: conjunto sin elementos, forma parte de cualquier conjunto.
Conjunto universal: conjunto sin condición.
Cardinal de un conjunto (#A): el número de elementos que posee el conjunto A.
2. igualdad de conjuntos
Conjuntos iguales: son aquellos que tienen los mismos elementos.
𝐴 = 𝐵 ⇔ {(∀𝑥 ∈ 𝑈 | 𝑥 ∈ 𝐴 ⇒ 𝑥 ∈ 𝐵) ∧ (∀𝑥 ∈ 𝑈 | 𝑥 ∈ 𝐵 ⇒ 𝑥 ∈ 𝐴)}
Conjuntos distintos: existe al menos un elemento que no pertenece a alguno de los
conjuntos.
𝐴 ≠ 𝐵 ⇔ {(∃𝑥 ∈ 𝑈 | 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵) ∨ (∃𝑥 ∈ 𝑈 | 𝑥 ∈ 𝐵 ∧ 𝑥 ∉ 𝐴)}
3. subconjuntos
Decimos que un conjunto es un subconjunto del conjunto B si todos los elementos de A
pertenecen a B:
𝐴 ⊆ 𝐵 ⇔ (∀𝑥 ∈ 𝑈: 𝑥 ∈ 𝐴 ⟹ 𝑥 ∈ 𝐵)
→ Subconjunto propio: solamente si todos los elementos de A están en B y sí B tiene
elementos aparte de los de A.

, 3.1. propiedades de los subconjuntos
Propiedad fundamental del conjunto vacío: el conjunto vacío es subconjunto de A.
∀A ⊆ U: ∅ ⊆ A
Reflexividad: para todo conjunto A, A es subconjunto de A.
∀A ⊆ U: A ⊆ A
Antirreflexividad propia: para todo conjunto A, A no es subconjunto propio de A.
∀A ⊆ U: A ⊄ A
Antisimetría: Dos conjuntos A y B son iguales solo si A es subconjunto de B y B de A.
A=B⇔A⊆U∧B⊆A
Transitividad: Si tenemos tres conjuntos A, B y C, A es subconjunto de B y B es
subconjunto de C, entonces A es subconjunto de C.
A⊆B∧B⊆C⇒A⊆C
4. conjunto potencia
El conjunto potencia de A es el conjunto de todos sus subconjuntos (o partes):
P (A) = {x: x ⊆ A}
ej: 𝐴 = {1, 2, 3} 𝑃(𝐴) = {∅, 1 , 2 , 3 , 1, 2 , {1, 3}, {2, 3}, {1, 2, 3}}

5. operaciones con conjuntos
5.1. unión e intersección
Unión (A∪ B): conjunto formado tanto por los elementos de A como los de B.
A ∪ B = {x ∈ U| x ∈ A ∨ x ∈ B }
Intersección (A ∩ B): conjunto formado por los elementos tanto de A como de B.
A ∩ B = {x ∈ U| x ∈ A ∧ x ∈ B }
5.2. complemento de un conjunto
El complemento del conjunto A es un conjunto formado por todos los elementos que no
forman parte de A.
Ac = {x ∈ U| x ∉ A }
5.3. diferencia de conjuntos
Es el conjunto que contiene a aquellos elementos de A que no pertenecen a B.
A − B = x ∈ U|x ∈ A ∧ x ∉ B
A − B = A ∩ Bc
5.4. diferencia simétrica
Es el conjunto que contiene a aquellos elementos de A y no pertenecen a B, o bien que
están en B y no pertenecen a A.
A △ B = (A − B) ∪ (B − A)
5.5. propiedades algebraicas
Asociatividad A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C
A∩(B∩C)=(A∩B)∩C
Conmutatividad A ∪ B = B ∪ A

, A∩B=B∩A
Idempotencia A ∪ A = A
A∩A=A
Absorción A ∩ ( A ∪ B ) = A
A∪(A∩B)=A
Identidad (neutro) A ∪ ∅ = A A ∪ U = U
A∩U=AA∩∅=∅
Distributividad A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C )
A∩(B∪C)=(A∩B)∪(A∩C)
A ∪ B − C = (A − C) ∪ (B − C )
A∩B−C=A∩B−(A∩C)
Leyes de Morgan (A ∪ B)c = Ac ∩ Bc
(A ∩ B)c = Ac ∪ Bc
A−A=∅
A=(A∩B)∪(A−B)
6. producto cartesiano
Llamaremos producto cartesiano de los conjuntos A y B al conjunto:
A × B = {x, y x ∈ A ∧ y ∈ B }




Que cumple las siguientes propiedades:
1. A × ∅ = ∅ × A = ∅ .
2. Si A ⊆ C y B ⊆ D , entonces A × B ⊆ C × D
3. A × ( B ∪ C ) = A × B ∪ A × C.
4. A × ( B ∩ C ) = A × B ∩ A × C.
7. relación o correspondencia
Dados dos conjuntos A y B, un subconjunto R del conjunto cartesiano A × B es una relación o
correspondencia.
7.1. tipos de correspondencia
Correspondencia unívoca: cada elemento del conjunto origen se corresponde con
sólo un elemento del conjunto imagen.
Correspondencia multívoca: a cada origen le corresponden varias imágenes o no
todas las imágenes tienen un único origen.
€4,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
leirealcubierre

Maak kennis met de verkoper

Seller avatar
leirealcubierre Universidad de Deusto
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
6
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen