100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Lineaire Algebra 2- Samenvatting- WB Y1 Q4- TU Delft

Beoordeling
-
Verkocht
-
Pagina's
13
Geüpload op
06-07-2023
Geschreven in
2022/2023

Hierin een samenvatting van het Wiskunde vak in het vierde kwartaal, linaire algebra 2, van de studie Werktuigbouwkunde op de TU Delft Bevat uitleg over: Determinanten, eigenwaarden, eigenvectoren, complexe eigenwaarden, differential equations, quadratic forms, discrete dynamical systems, gramm-schmidt, constrained optimization, singular value decomposition.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Ja
Geüpload op
6 juli 2023
Aantal pagina's
13
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

17 en 18 Determinanten en applicatie
Determinant 2x2: 𝑎𝑑 − 𝑏𝑐
Determinant 3 x 3 en hoger (enkel vierkante matrixen) → Cofactor expansion
Dit kan je langs enkele rij of kolom doen (kies kol/rij met meeste 0)
𝑛 𝑟𝑖𝑗 + 𝑛 𝑐𝑜𝑙
(− 1) * 𝑎𝑛𝑚 * 𝐷𝑒𝑡(𝑚𝑎𝑡𝑟𝑖𝑥 𝑑𝑎𝑡 𝑜𝑣𝑒𝑟𝑏𝑙𝑖𝑗𝑓𝑡 𝑛𝑎 𝑛 𝑒𝑛 𝑚 𝑤𝑒𝑔 𝑡𝑒 𝑠𝑡𝑟𝑒𝑝𝑒𝑛) + ...... 𝑒𝑡𝑐 𝑙𝑎𝑛𝑔𝑠 𝑑𝑒 𝑟𝑖𝑗/𝑐𝑜𝑙
Speciale matrix: triangular matrices (driehoekje nullen links onder of rechtsboven):
Det=product van de diagonale waarden.

Wat is een determinant buiten het feit dat je hier inverses mee kan uitrekenen?
Bepaalde transformaties zorgen ervoor dat een oppervlak uitgerekt wordt (shear
transformations), de determinant van deze transformatie matrix vertelt jou eigenlijk met
welke scalar het originele oppervlak (waar je de matrix op loslaat, dus eig verzameling
vectoren) vergroot/verkleint wordt! Als je dit doet voor R3 en hoger, heb je het dus over
volumevergroting, geen oppervlaktes. hoe een rechthoek een parallellogram wordt noem je
dit in 3D een parallelepiped genoemd.Hier kan je ook eigenwaarden mee berekenen, zie hs
19.


19 Eigenwaarden en Eigenvectoren
Check of dit een eigenvector is: Av=λv, dus matrix A loslaten op een vector zorgt voor een
veelvoud van diezelfde vector, hij is met de eigenwaarde langer/korter geworden.
λ → Det(A-λI)=0 (dit is de characteristic equation)
Dit betekent eigenlijk dat we een matrix A-lambda gaan vinden waarvoor hij niet
inverteerbaar is.

Als je deze vergelijking opgelost kan je meerdere keren dezelfde λ vinden, dit geeft aan wat
de algebraic multiplicity is.
Geometric multiplicity: geeft aan hoeveel eigenvectoren corresponderen met dezelfde
eigenwaarde λ. Je kijkt dus naar dim( Null(A-λI))
De geometrische multipliciteit kan nooit hoger zijn dan de algebraic multiplicity.
De som van de algebraïsche multipliciteiten van de eigenwaarden geeft n terug (A=nxn)
Als voor elke eigenwaarde de Geo mult=alg mult, dan is A diagonaliseerbaar (HS 20)

Set eigenvectoren zijn altijd linearly independent

Bij de triangular matrices staat de eigenwaarde op de diagonaal !!!

A is alleen inverteerbaar als:
- 0 is geen eigenwaarde
- De determinant is niet nul

Rekenregels rond determinanten
- Det(AB)=Det(A)*Det(B)
- Det(A^T)=Det(A)

, - Rij optellen bij een andere rij verandert Det(A) niet
- 2 rijen verwisselen maakt Det(A) = -Det(A)
- Een rij vermenigvuldigen met een scalar r geeft, Det(A)=r* Det(A) [Det(rA) is fout!]




20 Diagonalization
Similarity
−1
Als A en B nxn matrixen zijn, dan zijn deze similar als A te schrijven is als 𝐴 = 𝑃𝐵𝑃
Als twee matrices similar zijn, dan hebben ze dezelfde characteristic polynomial, en dus ook
dezelfde eigenwaarden (inclusief hun geo-multipliciteit).




Een matrix is alleen diagonaliseerbaar als deze n linearly independent eigenvectoren heeft.
Dan kan je een eigenvector basis vormen.
−1
Een matrix A is diagonaliseerbaar als A (nxn) te schrijven is als 𝐴 = 𝑃𝐷𝑃
€4,89
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
carmenzaky1

Maak kennis met de verkoper

Seller avatar
carmenzaky1
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
3 jaar
Aantal volgers
0
Documenten
2
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen