100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Basic Notations,Matrix Operations,Matrix Determinant and Trace

Beoordeling
-
Verkocht
-
Pagina's
16
Geüpload op
27-06-2023
Geschreven in
2020/2021

This chapter summarizes some important results of linear and matrix algebra that are instrumental in deriving many statistical results in subsequent chapters. Our emphasis is given to special matrices and their properties. A

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Vak

Documentinformatie

Geüpload op
27 juni 2023
Aantal pagina's
16
Geschreven in
2020/2021
Type
College aantekeningen
Docent(en)
Dr.b.gangadaran
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Chapter 1

Linear and Matrix Algebra

This chapter summarizes some important results of linear and matrix algebra that are
instrumental in deriving many statistical results in subsequent chapters. Our emphasis
is given to special matrices and their properties. Although the coverage of these mathe-
matical topics is rather brief, it is self-contained. Readers may also consult other linear
and matrix algebra textbooks for more detailed discussions; see e.g., Anton (1981),
Basilevsky (1983), Graybill (1969), and Noble and Daniel (1977).


1.1 Basic Notations
A matrix is an array of numbers. In what follows, a matrix is denoted by an upper-case
alphabet in boldface (e.g., A), and its (i, j) th element (the element at the i th row and
j th column) is denoted by the corresponding lower-case alphabet with subscripts ij
(e.g., aij ). Specifically, a m × n matrix A contains m rows and n columns and can be
expressed as
 
a11 a12 ... a1n
 
 a 
 21 a22 . . . a2n 
A= . .. .. .. .
 .. . . . 
 
am1 am2 . . . amn
An n × 1 (1 × n) matrix is an n-dimensional column (row) vector. Every vector will be
denoted by a lower-case alphabet in boldface (e.g., z), and its i th element is denoted
by the corresponding lower-case alphabet with subscript i (e.g., zi ). An 1 × 1 matrix is
just a scalar. For a matrix A, its i th column is denoted as ai .
A matrix is square if its number of rows equals the number of columns. A matrix is
said to be diagonal if its off-diagonal elements (i.e., aij , i = j) are all zeros and at least

1

,2 CHAPTER 1. LINEAR AND MATRIX ALGEBRA


one of its diagonal elements is non-zero, i.e., aii = 0 for some i = 1, . . . , n. A diagonal
matrix whose diagonal elements are all ones is an identity matrix, denoted as I; we also
write the n × n identity matrix as I n . A matrix A is said to be lower (upper) triangular
if aij = 0 for i < (>) j. We let 0 denote the matrix whose elements are all zeros.

For a vector-valued function f : Rm → Rn , ∇θ f (θ) is the m × n matrix of the
first-order derivatives of f with respect to the elements of θ:
 ∂f1 (θ) ∂f2 (θ) ∂fn (θ) 
∂θ1 ∂θ1 ... ∂θ1
 
 ∂f1 (θ) ∂f2 (θ) ∂fn (θ) 
 ∂θ2 ∂θ2 ... ∂θ2 
∇θ f (θ) = 
 .. .. ..
.

 .. 
. . . .
 
∂f1 (θ) ∂f2 (θ) ∂fn (θ)
∂θm ∂θm ... ∂θm

When n = 1, ∇θ f (θ) is the (column) gradient vector of f (θ). The m × m Hessian
matrix of the second-order derivatives of the real-valued function f (θ) is
 ∂ 2 f (θ) ∂ 2 f (θ) ∂ 2 f (θ) 
∂θ1 ∂θ1 ∂θ1 ∂θ2 ... ∂θ1 ∂θm
 
 ∂ 2 f (θ) ∂ 2 f (θ) ∂ 2 f (θ) 
 ... 
∇θ f (θ) = ∇θ (∇θ f (θ)) = 
∂θ2 ∂θ1 ∂θ2 ∂θ2 ∂θ2 ∂θm
2 .
 .. .. .. .. 
 . . . . 
 
∂ 2 f (θ) ∂ 2 f (θ) ∂ 2 f (θ)
∂θm ∂θ1 ∂θm ∂θ2 ... ∂θm ∂θm



1.2 Matrix Operations

Two matrices are said to be of the same size if they have the same number of rows and
same number of columns. Matrix equality is defined for two matrices of the same size.
Given two m × n matrices A and B, A = B if aij = bij for every i, j. The transpose of
an m × n matrix A, denoted as A , is the n × m matrix whose (i, j) th element is the
(j, i) th element of A. The transpose of a column vector is a row vector; the transpose
of a scalar is just the scalar itself. A matrix A is said to be symmetric if A = A , i.e.,
aij = aji for all i, j. Clearly, a diagonal matrix is symmetric, but a triangular matrix is
not.

Matrix addition is also defined for two matrices of the same size. Given two m × n
matrices A and B, their sum, C = A + B, is the m × n matrix with the (i, j) th element
cij = aij + bij . Note that matrix addition, if defined, is commutative:

A + B = B + A,


c Chung-Ming Kuan, 2002

, 1.2. MATRIX OPERATIONS 3


and associative:

A + (B + C) = (A + B) + C.

Also, A + 0 = A.

The scalar multiplication of the scalar c and matrix A is the matrix cA whose (i, j) th
element is caij . Clearly, cA = Ac, and −A = −1 × A. Thus, A + (−A) = A − A = 0.
Given two matrices A and B, the matrix multiplication AB is defined only when the
number of columns of A is the same as the number of rows of B. Specifically, when A
is m × n and B is n × p, their product, C = AB, is the m × p matrix whose (i, j) th
element is

n
cij = aik bkj .
k=1

Matrix multiplication is not commutative, i.e., AB = BA; in fact, when AB is defined,
BA need not be defined. On the other hand, matrix multiplication is associative:

A(BC) = (AB)C,

and distributive with respect to matrix addition:

A(B + C) = AB + AC.

It is easy to verify that (AB) = B  A . For an m × n matrix A, I m A = AI n = A.

The inner product of two d-dimensional vectors y and z is the scalar


d

yz= yi zi .
i=1

If y is m-dimensional and z is n-dimensional, their outer product is the matrix yz 
whose (i, j) th element is yi zj . In particular,


d
zz = zi2 ,
i=1

which is non-negative and induces the standard Euclidean norm of z as z = (z  z)1/2 .
The vector with Euclidean norm zero must be a zero vector; the vector with Euclidean
norm one is referred to as a unit vector. For example,
 1 √3  1 1 1
(1 0 0), 0 , √ √ √ ,
2 2 2 3 6


c Chung-Ming Kuan, 2002
€10,17
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
rasmia

Maak kennis met de verkoper

Seller avatar
rasmia Annamali university
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
11
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen