100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

Prove that the set of fixed points of a linear transformation T V r

Beoordeling
-
Verkocht
-
Pagina's
1
Cijfer
A
Geüpload op
27-06-2023
Geschreven in
2022/2023

Prove that the set of fixed points of a linear transformation T : V rightarrow V is a subspace of V. Solution Dear William, In order to show that a subset P of a vector space V is a subspace of that vector space, we must show three things. First of all we must show that the 0 vector is contained in P. Secondly, we must show that if v and w are in P, then v+w is in P also. Finally we must show that if v is in P and c is a scalar, then cv is in P. The last two conditions are summarized by saying that P is closed under the taking of linear combinations. If these three conditions are satisfied, then P will be a subspace. So now I begin the proof. First of all, the zero vector 0 is a fixed point because all linear transformations map the zero vector to the zero vector of the image space, which is the same as the domain space in this case. Thus T(0) =0. Thus zero is a fixed point. As to the second part, assume that v and w are fixed points. Then we wish to show that v+w is also a fixed point. By definition T(v) -> v and T(w)- >w. Furthermore, since T is a linear transformation we have T(v+w) = T(v)+T(w) = v+w. Thus v+w is a fixed point if v and w are. Finally, let us assume that v is a fixed point and that c is a scalar. Then we wish to show that cv is also a fixed point. We have T(cv) = cT(v) = cv, since Tis linear and v is a fixed point. Thus we have shown that the set of fixed points contains the zero vector and is closed under the taking of linear combinations. Thus the set of fixed points of a linear transformation T: V->V is a subspace of V. I hope that this helps!! David

Meer zien Lees minder








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
27 juni 2023
Aantal pagina's
1
Geschreven in
2022/2023
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Voorbeeld van de inhoud

Prove that the set of fixed points of a linear transformation T : V rightarrow V is a subspace of
V.


Solution


Dear William,


In order to show that a subset P of a vector space V is a subspace of that vector space, we must
show three things. First of all we must show that the 0 vector is contained in P. Secondly, we
must show that if v and w are in P, then v+w is in P also. Finally we must show that if v is in P
and c is a scalar, then cv is in P. The last two conditions are summarized by saying that P is
closed under the taking of linear combinations. If these three conditions are satisfied, then P will
be a subspace.
So now I begin the proof.
First of all, the zero vector 0 is a fixed point because all linear transformations map the zero
vector to the zero vector of the image space, which is the same as the domain space in this case.
Thus T(0) =0. Thus zero is a fixed point. As to the second part, assume that v and w are fixed
points. Then we wish to show that v+w is also a fixed point. By definition T(v) -> v and T(w)-
>w. Furthermore, since T is a linear transformation we have T(v+w) = T(v)+T(w) = v+w. Thus
v+w is a fixed point if v and w are. Finally, let us assume that v is a fixed point and that c is a
scalar. Then we wish to show that cv is also a fixed point. We have T(cv) = cT(v) = cv, since Tis
linear and v is a fixed point. Thus we have shown that the set of fixed points contains the zero
vector and is closed under the taking of linear combinations. Thus the set of fixed points of a
linear transformation T: V->V is a subspace of V.
I hope that this helps!!
David
€6,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
meejuhaszjasmynspe52866

Maak kennis met de verkoper

Seller avatar
meejuhaszjasmynspe52866 Self
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
338
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen