100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Summary Machine Learning - Linear Regression and Gradient Descent | Lecture 2

Beoordeling
-
Verkocht
-
Pagina's
1
Geüpload op
17-06-2023
Geschreven in
2022/2023

- The lecture discusses linear regression and gradient descent as a learning algorithm. - Linear regression is introduced as one of the simplest learning algorithms for supervised learning regression problems. - The lecture uses the example of predicting house prices to explain the process of building a learning algorithm. - The cost function and the goal of choosing parameters Theta to minimize the cost function are explained. - Batch gradient descent and stochastic gradient descent are introduced as optimization algorithms for linear regression.

Meer zien Lees minder
Instelling
Vak








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
17 juni 2023
Aantal pagina's
1
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

In this lecture on linear regression and gradient descent from Stanford CS229, the instructor
introduces the concept of linear regression as a learning algorithm and discusses its application in
supervised learning problems. Linear regression is explained as a method for predicting continuous
values based on input features. The instructor uses the example of predicting house prices to
illustrate the process of building a learning algorithm.



The lecture covers the key components of supervised learning, including training sets, learning
algorithms, and hypotheses. The goal is to find parameter values for the hypothesis that minimize
the difference between the predicted values (hypothesis output) and the actual values (labels) in the
training set. The cost function is introduced as a measure of the model's performance, and the
instructor explains that the goal is to minimize this cost function.



The concept of gradient descent is then introduced as an optimization algorithm for finding the
optimal parameters that minimize the cost function. The instructor explains that gradient descent
iteratively updates the parameters in the direction of steepest descent to gradually reach a minimum
of the cost function. The learning rate is briefly mentioned as a parameter that determines the step
size in each iteration of gradient descent.



The lecture further explores the mathematics behind gradient descent, including the derivative of
the cost function with respect to the parameters. The instructor explains how the derivative helps
determine the direction of steepest descent and how it is used to update the parameter values in
each iteration. The concept of batch gradient descent, which processes the entire training set in each
iteration, is discussed along with its limitations in terms of computational efficiency.



To address the limitations of batch gradient descent, the instructor introduces stochastic gradient
descent as an alternative approach. Stochastic gradient descent randomly selects a single training
example in each iteration, making the algorithm faster but more prone to noise. The instructor
highlights the trade-off between computational efficiency and the potential for finding the global
optimum.



Towards the end of the lecture, the instructor briefly mentions the normal equations as an
alternative method for finding the optimal parameters in linear regression. The normal equations
involve solving a system of linear equations to obtain the parameter values directly.



In summary, this lecture provides an introduction to linear regression, gradient descent, and the key
concepts of supervised learning. It explains how linear regression is used to predict continuous
values based on input features and discusses the optimization process using gradient descent. The
lecture also touches on the use of stochastic gradient descent and the normal equations as
alternative approaches to finding optimal parameters.
€7,53
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
reejubhattacherji

Maak kennis met de verkoper

Seller avatar
reejubhattacherji Brainware University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
2
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen