100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

Natural Language Processing (NLP), Top Exam Questions and answers, verified.

Beoordeling
-
Verkocht
-
Pagina's
7
Cijfer
A+
Geüpload op
13-06-2023
Geschreven in
2022/2023

Natural Language Processing (NLP), Top Exam Questions and answers, verified. Artificial Intelligence - -A computer performing tasks that a human can do NLP Sentiment analysis is a form of... - -classification NLP topic modeling is a form of... - -Dimensionality reduction Tokenization - -Splitting raw text into small, indivisible units for processing. Units can be words, sentences, n-grams (n-word combos), other characters defined by regex Stop words - -Words that have very little semantic value Stemming and Lemmatization - -Cut word down to base form Stemming- uses rough heuristics to reduce words to base Lemmatization- uses vocabulary and morphological analysis (makes run, runs, running, and ran all the same) Named Entity Recognition - -Identifies and tags named entities in text (people, places, organizations, phone numbers, emails, etc) aka entity extraction Compound term extraction - -extracting and tagging compound words or phrases in text Levenshtein distance - -Minimum number of operations to get from one word to another. One way of quantifying word similarity Levenshtein operations - -Deletions (delete a character) Insertions (insert a character) Mutation (change a character) Corpus - -Collection of texts Bag of words model - -- Simplified representation of text, where each document is recognized as a bag of its words - Grammar and word order are disregarded, but multiplicity is kept Cosine similarity - -Way to quantify the similarity between documents 1. Put each document in vector format 2. Find the cosine of the angle between the documents Term frequency-inverse document frequency - -(term frequency) * (inverse document frequency) Term frequency - -Term count/total terms Inverse document frequency - -- Considers how common a word is among all the documents - Rare words get additional weight Which classification models suffer from curse of dimensionality? - -KNN, SVM, linear models (linear/logisitic regression), decision trees Distance-based models feature selection - -Removes features that aren't helpful (might not be predictive of target and may not have a lot of variation) Art (try fitting with some features and changing it and comparing, regularization, feature importance scores) Feature extraction - -Uses information from all features, but creates artificial new features that are composites (uses information from all features, may put more weight on certain features) SVD - -Singular value decomposition, type of matrix decomposition (just multiplication) easy to compute & doesn't require square matrix matrices are our data, rows are observations, columns are features High level, what does SVD do? - -Generalization of eigendecomposition for rectangular matrices PCA - -Principal Components Analysis unsupervised technique care about the direction of maximal variation b/c that represents the differences in our observations and that helps us in our clustering/classification tasks What is PCA used for? - -Dropping the components that explain the least variance (uses SVD behind the scenes). Dimensionality reduction Document-term matrix - -rows = documents

Meer zien Lees minder
Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Vak

Documentinformatie

Geüpload op
13 juni 2023
Aantal pagina's
7
Geschreven in
2022/2023
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Natural Language Processing (NLP), Top
Exam Questions and answers, verified.

Artificial Intelligence - ✔✔-A computer performing tasks that a human can do



NLP Sentiment analysis is a form of... - ✔✔-classification



NLP topic modeling is a form of... - ✔✔-Dimensionality reduction



Tokenization - ✔✔-Splitting raw text into small, indivisible units for processing. Units can be words,
sentences, n-grams (n-word combos), other characters defined by regex



Stop words - ✔✔-Words that have very little semantic value



Stemming and Lemmatization - ✔✔-Cut word down to base form



Stemming- uses rough heuristics to reduce words to base



Lemmatization- uses vocabulary and morphological analysis (makes run, runs, running, and ran all the
same)



Named Entity Recognition - ✔✔-Identifies and tags named entities in text (people, places, organizations,
phone numbers, emails, etc)



aka entity extraction



Compound term extraction - ✔✔-extracting and tagging compound words or phrases in text

, Levenshtein distance - ✔✔-Minimum number of operations to get from one word to another. One way
of quantifying word similarity



Levenshtein operations - ✔✔-Deletions (delete a character)

Insertions (insert a character)

Mutation (change a character)



Corpus - ✔✔-Collection of texts



Bag of words model - ✔✔-- Simplified representation of text, where each document is recognized as a
bag of its words

- Grammar and word order are disregarded, but multiplicity is kept



Cosine similarity - ✔✔-Way to quantify the similarity between documents

1. Put each document in vector format

2. Find the cosine of the angle between the documents



Term frequency-inverse document frequency - ✔✔-(term frequency) * (inverse document frequency)



Term frequency - ✔✔-Term count/total terms



Inverse document frequency - ✔✔-- Considers how common a word is among all the documents

- Rare words get additional weight



Which classification models suffer from curse of dimensionality? - ✔✔-KNN, SVM, linear models
(linear/logisitic regression), decision trees



Distance-based models

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
PassPoint02 Chamberlain School Of Nursing
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
173
Lid sinds
3 jaar
Aantal volgers
105
Documenten
4552
Laatst verkocht
4 weken geleden

4,1

39 beoordelingen

5
22
4
6
3
5
2
4
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen