100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

sujet grand oral bac (2021) : maths (thème architecture) SUITE DE FIBONACCI & NOMBRE D'OR : COMMENT UN ARCHITECTE UTILISE T IL DES NOTIONS MATHÉMATIQUES POUR CONSTRUIRE UN BÂTIMENT ESTHÉTIQUE ET CONFORME À SA VISION

Beoordeling
3,7
(3)
Verkocht
45
Pagina's
3
Cijfer
Satisfaisant
Geüpload op
13-06-2023
Geschreven in
2020/2021

SUITE DE FIBONACCI & NOMBRE D'OR : COMMENT UN ARCHITECTE UTILISE T IL DES NOTIONS MATHÉMATIQUES POUR CONSTRUIRE UN BÂTIMENT ESTHÉTIQUE ET CONFORME À SA VISION

Instelling
Vak








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Middelbare school
Studie
Lycée
Vak
School jaar
1

Documentinformatie

Geüpload op
13 juni 2023
Aantal pagina's
3
Geschreven in
2020/2021
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

SUITE DE FIBONACCI & NOMBRE D'OR
COMMENT UN ARCHITECTE UTILISE-T-IL DES NOTIONS MATHÉMATIQUES POUR
CONSTRUIRE UN BÂTIMENT ESTHÉTIQUE ET CONFORME À SA VISION

[intro]

Mon intérêt, pour l'architecture et les mathématiques m'ont amené à penser à un sujet, traitant de la suite de
Fibonacci et du nombre d'or.
Ainsi, durant cette présentation, nous verrons : comment un architecte utilise-t-il des notions mathématiques
pour construire un bâtiment esthétique et conforme à sa vision.
Pour cela, nous étudierons la suite de Fibonacci, afin de la mettre en relation avec le nombre d'or. Et pour
finir/terminer , avec l'architecture.
[Mais] tout d'abord, un peu d'histoire des mathématiques avec Leonardo de Pise, plus connu sous le nom de
Leonardo Fibonacci,

[...]

1. La suite de Fibonacci

*Né en 1175, le mathématicien italien Fibonacci, auteur de Liber Abaci publié en 1202, introduit dans son
ouvrage, la suite de Fibonacci comme un problème récréatif.
De nos jours, celle-ci peut être considérée comme le tout premier modèle mathématique en dynamique des
populations.
En effet, elle y décrit la croissance d'une population de lapins, mais plus précisément sur le nombre de lapins
qui pouvaient naître en 1 an à partir d'un unique couple.

Cependant, des conditions s'imposent :
- les lapins ne peuvent procréer qu'après 2 mois d'existence
- chaque couple produit chaque mois un nv couple
- les lapins ne meurent jamais
=> Alors, en tenant compte de la fertilité des espèces, la solution qu'il propose apparaît ainsi :
- lors du 1er mois, nous avons le couple de lapins d'origine
- lors du 2e mois, nous avons toujours que ce même couple
- mais lors du troisième mois on a (déjà) 2 couples,
- puis 3 le quatrième mois
- et 5 lors du cinquième mois
Bien sûr, ce mécanisme appliqué est le même pour les mois suivants. Rappelons tout de même que
par définition, une suite est une « succession » de nombres réels, appelés « termes » de la suite. La
notation Un est la notation indicielle, où n désigne l’indice ou le rang.

Ici, ces 5 couples de ces 5 premiers mois représentent les 6 premiers termes de la suite de Fibonacci,
*6 car la suite est définit à partir de 0 et 1, de ce fait nous savons que les deux 1er termes sont 0 et
1*
ainsi, les 6 premier termes de la suite sont donc : 0;1;1;2;3;5
On en conclut que la croissance de cette population, est bel et bien décrite par la suite de Fibonacci.
On s'aperçoit que chaque terme de cette suite, à partir du 3e correspond à la sommes des deux
précédent, c-à-d que U2 = U1 + U0
On peut alors poser la relation suivante [avec n appartenant à l'ensemble d'entier naturel, grâce à la
définition de la suite de Fibonacci] :
Un+2 = Un+1 + Un ou encore Un = Un-1 + Un-2
Ainsi, grâce à cette formule, nous pouvons calculer les premiers termes de la suite

(ex avec U2 = U1 + U0 avec U1=1 et U0 = 0 <=> U2 = 1 + 0 donc U2 = 1.. )
€6,49
Krijg toegang tot het volledige document:
Gekocht door 45 studenten

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Beoordelingen van geverifieerde kopers

Alle 3 reviews worden weergegeven
7 maanden geleden

1 jaar geleden

1 jaar geleden

3,7

3 beoordelingen

5
0
4
2
3
1
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
fabianieraf Faculté d\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
76
Lid sinds
2 jaar
Aantal volgers
51
Documenten
2
Laatst verkocht
6 maanden geleden

3,8

11 beoordelingen

5
2
4
6
3
2
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen