100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary AP Maths Matric Notes

Beoordeling
-
Verkocht
4
Pagina's
26
Geüpload op
05-06-2023
Geschreven in
2020/2021

Typed and summarized IEB AP Math notes - does not include statistics notes. Includes worked examples and important concepts to note. Received a distinction in AP Maths at the end of Grade 11 due to the basis of these notes. Content includes: Complex Number Theory, Mathematical Induction, Radian Measure, Quadratic equations, Cubic Polynomials and equations, Partial fractions, Absolute Values (and graphing), Rational inequalities, Split and Composite functions, Continuity and Differentiability, Differentiation (calculus), Calculus of Trig functions, Implicit Differentiation, Newton's method, Recursive (and explicit) formulae. After every section, notes include what practice is recommended from required AP Maths Textbook - Note: Textbook may have changed since 2020/2021. Please ensure the content and exercise number correlates to that of your textbook, if not please ignore.

Meer zien Lees minder
Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
5 juni 2023
Bestand laatst geupdate op
5 juni 2023
Aantal pagina's
26
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

AP MATH EXAM NOTES 2021: substitute 𝑖 = √ −1 into this
equation, then (√ −1)2 + 1 =
Complex Number Theory: −1 + 1 = 0
Complex Numbers (ℂ) ❖ 𝑖 3 = −𝑖.

Examples:
Rewrite the following non-real numbers in
i-form:

Real Numbers (ℝ) Non-Real Numbers (ℝ’) √−9 = √9 × −1

√9 × √−1
= 3𝑖
Irrationals (ℚ’)
√−20 = √4 × 5 × −1
Rationals (ℚ) = 2 × √5 × √−1
Fractions = 2√5𝑖

(Exercise 1).
In general, complex number ℤ can
Integers (ℤ) be written in the form: ℤ = 𝑎 + 𝑏𝑖
𝑎, 𝑏 are real numbers.
✓ Examples of Non-real numbers: 𝑎 = real part of the complex
number, can be written as 𝑅𝑒(𝑧) =
√ −1 ; √ −3.
✓ Examples of irrationals: 𝑎.
𝑏 = imaginary part of the complex
√2 ; 𝜋 ; √5
number, can be written as 𝐼𝑚 (𝑧) =
The concept of non-real numbers: 𝑏.
➢ The square root of a negative Multiplication, addition and subtraction of
number is called a non-real or complex numbers:
imaginary number.
a) (5 − 3𝑖)2
Some notation: = 25 − 30𝑖 + 9𝑖 2
= 25 − 30𝑖 + 9(−1)
❖ The internationally accepted
= 25 − 30𝑖 − 9
notation for √ −1 is the letter 𝑖.
= 16 − 30𝑖
❖ We say that 𝑖 = √ −1. b) (3 + 2𝑖 )(3 − 2𝑖 ) − 𝑖 2 (𝑖 4 − 1)
❖ If we square both sides of the = 9 − 4𝑖 2 − 𝑖 6 + 𝑖 2
equality we get: 𝑖 2 = (√ −1)2 = = 9 − 4(−1) − 𝑖 4 . 𝑖 2 − 1
−1 = 9 + 4 − (1)(−1) − 1
❖ It is easy to verify that = 13
𝑖 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 4 = 1
❖ Notice that 𝑖 is a non-real solution (Exercise 2).
of the equation: 𝑥 2 + 1 = 0. If you

,Complex conjugates and division of represented on the Argand plane as
complex numbers: follows:
▪ If 𝑧 = 𝑎 + 𝑏𝑖 is a given complex




Imaginary Axis
number where a and b are real
numbers and 𝑖 = √ −1, then the 3𝑖 𝑧 = 4 + 3𝑖
complex number 𝑧 ∗= 𝑎 − 𝑏𝑖 is 𝑅𝑒(𝑧) = 4
called the complex conjugate of
𝐼𝑚 (𝑧) = 3
𝑧 = 𝑎 + 𝑏𝑖.

Examples:
Write down the complex conjugates of the
following complex numbers: Real Axis 4
a) 𝑧 = 3 + 2𝑖
𝑧 ∗= 3 − 2𝑖
o Any complex number written
b) 𝑧 = 5𝑖 − 6
in the form 𝑧 = 𝑎 + 𝑏𝑖 is said
𝑧 ∗= −5𝑖 − 6
to be in rectangular form (or
4+𝑖 Cartesian form).
Write 𝑧 = 2−𝑖 in the form 𝑧 = 𝑎 + 𝑏𝑖 and
then state 𝑅𝑒(𝑧), 𝐼𝑚(𝑧) 𝑎𝑛𝑑 𝑧 ∗. The modulus of a complex number:
4+ 𝑖 2+ 𝑖 • The modulus of a complex number
𝑧= ×
2− 𝑖 2+ 𝑖 𝑧 is is the distance of 𝑧 from the
(4 + 𝑖 )(2 + 𝑖 ) origin.
𝑧= • We write the modulus of 𝑧 as |𝑧| or
(2 − 𝑖 )(2 + 𝑖 )
simply as 𝑟.
8 + 6𝑖 + 𝑖 2 • Consider the number 𝑧 = 𝑥 + 𝑦𝑖.
𝑧=
4 − 𝑖2
7 + 6𝑖
𝑧= 𝑧 = 𝑥 + 𝑦𝑖
5
7 6 𝑟 = |𝑧|
𝑧= + 𝑖
5 5
[𝐼𝑚(𝑧)]
7 6 7 6
𝑅𝑒(𝑧) = ; 𝐼𝑚(𝑧) = ; 𝑧 ∗= − 𝑖
5 5 5 5
[𝑅𝑒(𝑧) ]
(Exercise 3).
From Pythagoras we know that:
Complex (Argand) Planes:
𝑟2 = 𝑥 2 + 𝑦 2
o Complex numbers can be
represented by points in a plane 𝑟 = √𝑥 2 + 𝑦 2
called the complex plane or argand
plane. |𝑟| = √𝑥 2 + 𝑦 2
o Consider the complex number 𝑧 =
4 + 3𝑖. This number can be Examples:
Determine |𝑧| if 𝑧 = 4 + 3𝑖

, 2
Solution: 𝑟2 = (1)2 + (√3)

𝑟=2
𝑧 = 4 + 3𝑖 3. Using any of the three
𝑟 trigonometric ratios, we can
calculate the size of 𝜃.

√3
sin 𝜃 =
2
𝑟2 = (4)2 + (3)2
𝜃 = 60°
𝑟2 = 25
∴ arg(𝑧) = 60°
𝑟=5
(Exercise 4).
|𝑧| = 5
The modulus-argument form of a complex
The argument of z: number:

1. The argument of a complex a) Consider the following diagram
number 𝑧 is the angle between the representing the complex number
real axis and the line joining 𝑧 to 𝑧 = 𝑥 + 𝑦𝑖.
the origin. We refer to the
argument of 𝑧 as arg (𝑧).
𝑧 = 𝑥 + 𝑦𝑖
𝑟
𝑦
𝜃
𝑧 = 𝑥 + 𝑦𝑖 𝑥
𝑟 = |𝑧| b) We know from Trig that:
𝑥
𝜃 = arg (𝑧) = cos 𝜃 ; ∴ 𝑥 = 𝑟 cos 𝜃
𝑟
𝑦
and = sin 𝜃 ; ∴ 𝑦 = 𝑟 sin 𝜃
𝑟
2. We can use the following c) We can now rewrite 𝑧 = 𝑥 + 𝑦𝑖 as
trigonometric ratios to calculate the
follows:
size of 𝜃:
𝑦 𝑥 𝑦 = (𝑟 cos 𝜃) + 𝑖 (𝑟 sin 𝜃)
sin 𝜃 = ; cos 𝜃 = ; tan = 𝑟 cos 𝜃 + 𝑖𝑟 sin 𝜃
𝑟 𝑟 𝑥
= 𝑟(cos 𝜃 + 𝑖 sin 𝜃)
Example: d) 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) is called the
Calculate arg (𝑧) if 𝑧 = 1 + (√3)𝑖 modulus-argument form or the
polar form of a complex number 𝑧.

Examples:
𝑧 = 1 + (√3)𝑖
Write 𝑧 = 2(cos 60° + 𝑖 sin 60°) in
𝑟 rectangular form 𝑧 = 𝑎 + 𝑏𝑖:
√3

𝜃
1
€10,64
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
cayleighbadrick

Maak kennis met de verkoper

Seller avatar
cayleighbadrick Stellenbosch University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
4 jaar
Aantal volgers
1
Documenten
3
Laatst verkocht
3 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen