100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting - Text Mining (XB_0085)

Beoordeling
-
Verkocht
4
Pagina's
9
Geüpload op
30-05-2023
Geschreven in
2022/2023

Text mining samenvatting voor studie Artificial Intelligence & Data Science minor. Samenvatting van lectures and notes.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
30 mei 2023
Aantal pagina's
9
Geschreven in
2022/2023
Type
Samenvatting

Voorbeeld van de inhoud

Text mining summary
1 – Search is divided into 2: meta data index and text index
Metadata index = index based on metadata associated with a document: title, author, date
and keywords. Like a library computer where you can search on “author”
Text index = index based on the full text of documents themselves. Often used in search
engines, like finding a keyword in texts.
Event index = type of index used to organize and retrieve information about events, like
meetings or concerts. Typically involves meta data such as date, time, location etc as well as
any related documents such as agendas or presentations. Like when planning a vacation, to
see what will happen during your time there.

Anomalies = refer to data points that differ significantly from the norm or expected
behaviour, like if sentiment analysis model identifies a piece of text as positive while most
other similar texts are negative

Short text is complex message with a lot of relations and information  NLP technology to
extract this information

Computational linguistics = algo’s that model language data and define notions like:
similarity, info value, sequence probabilities (develop chatbots that can understand and
respond to user queries)
Natural Language Processing (NLP) = engineering to address aspects of natural language like:
tokenisation, lemmatisation, compound splitting, sentiment analysis (=> uses ML algo to
determine the emotional tone of given text)
NLP toolkits = software packages and resources that provide and/or combine collections of
NLP modules (NLTK in python)
Language applications = machine translation, summarisation, chat bots, text mining (google
translate or siri)
Text mining = from unstructured text to structured data (information or knowledge)(our
focus: understand the technology, limitations, build applications) (=> topic modelling which
uses statistical algo’s to identify topics and patterns within a large corpus of text)

Week 2&3 – part 1:
NLP:
 Complex problem (extracting info from texts) is broken down into a number of
smaller problems
 Simple, structural problems solved first and higher-level semantics tasks are solved
later, using output of earlier modules as input
o So called pipeline architecture with dependencies across modules
o Error propagation
 For each problem different techniques:
o Knowledge-base & rules (linguistic knowledge)
o Machine learning (supervised and unsupervised) data driven

We always need to do preprocessing:
 Even for the current state-of-the-art deep learning systems
 First problem: what is a word, what is a sentence? Not trivial

,  Tokenization (example of problems):
o 21st century, quotes, don’t, hyphens, $100,45 etc
 Sentence splitting (example of problems):
o Dr., bol.com, etc.m white spaces, tables, HTML markup, <h1></h1>, new lines

Named entity recognition pipeline example: sentiment analysis pipeline example




Some issues:
 Dependencies across modules result in error propagation
 Ambiguities (multiple values with confidence score, like POS tagging: 80% noun, 20%
verb) are often not exploited by next levels
 Conflicts: different modules state information that is not compatible
 Complex and difficult to maintain, like: input and output needs to be interoperable
across modules

Text mining is like solving a puzzle. You have to put all the pieces together to understand
what the puzzle is trying to show you.

But sometimes there are problems that can make solving the puzzle difficult. One problem is
when the different pieces of the puzzle depend on each other, so if one piece is wrong, it
affects all the other pieces.

Another problem is when there are different meanings for the same word, like "run" can
mean to jog or to manage. This can make it hard to understand what the puzzle is trying to
say.

Also, sometimes there can be different parts of the puzzle that don't match up or agree with
each other. This can make it even harder to understand the puzzle.

Lastly, text mining is complex and requires a lot of work to make sure everything fits together
properly. It's like putting together a big Lego castle where each block has to fit with the
others.

For example, imagine you are trying to understand a book about a dog named Max. One
piece of the puzzle might be the word "bark." Depending on how it's used, it could mean Max
is barking at someone, or he's barking up a tree. If the wrong meaning is chosen, it could
affect the rest of the puzzle.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
simonvanrens Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
11
Lid sinds
5 jaar
Aantal volgers
9
Documenten
10
Laatst verkocht
1 jaar geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen