100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

DS Algèbre L2 MATHS 16 mars 2021

Beoordeling
-
Verkocht
-
Pagina's
2
Cijfer
Moyen
Geüpload op
25-05-2023
Geschreven in
2021/2022

Vous trouverez ici un DS d'algèbre de niveau Licence 2 maths

Instelling
Vak








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
25 mei 2023
Aantal pagina's
2
Geschreven in
2021/2022
Type
Tentamen (uitwerkingen)
Bevat
Alleen vragen

Onderwerpen

Voorbeeld van de inhoud

UPHF - INSA HdF
licence 2 Mathématiques - Semestre 4 Année 20-21



UE Algèbre 4P
Devoir surveillé du 16 mars 2021
Durée : 2 heures


Les calculatrices et les documents sont interdits.
À titre d’indication, il est donné pour chaque exercice du sujet le nombre approximatif de points qui lui sera attribué
lors de la correction.
Il sera accordé une grande importance dans l’évaluation des réponses à la rigueur et à la qualité de la rédaction.


Exercice 1 [5 points]
Soit E un R-espace vectoriel, non réduit à {0E }, de dimension finie, et soit u un endomorphisme de E.
On suppose que u3 = u2 , u 6= idE , u2 6= 0L(E) et u2 6= u.
1) Déterminer le polynôme minimal de u, noté πu .
2) Donner le spectre de u, noté spec(u).
3) Justifier que u n’est pas diagonalisable.


Exercice 2 [5,5 points]
Soit le R-espace vectoriel E = R2 [X], muni de ses deux opérations habituelles.

1) On note C la base canonique de E et C ∗ = (1∗ , X ∗ X 2 ) sa base duale.
Donner les images d’un polynôme P ∈ E par les formes linéaires qui composent la base C ∗ .
2) On considère les formes linéaires φ1 , φ2 , φ3 , définies par :
Z 1
∀P ∈ E , φ1 (P ) = P (1) , φ2 (P ) = P 0 (1) , φ3 (P ) = P (t)dt.
0

Montrer que la famille B ∗ = {φ1 , φ2 , φ3 } est une base de l’espace dual de E, noté E ∗ .


Exercice 3 [6 points]
Soient un nombre entier n ≥ 2 et E = Mn (R) le R-espace vectoriel des matrices carrées réelles d’ordre n
muni des deux opérations habituelles.
On considère l’application
ψ : E 2 −→ R , (X, Y ) 7−→ tr (t XY ),

où tr est l’application qui à une matrice associe sa trace et où tX désigne la transposée de X.
1) On considère dans cette question une matrice A carré réelle d’ordre 2.
Montrer que : A 6= 02 =⇒ tr(tAA) > 0.
Vous admettrez que ce résultat se généralise à des matrices carrées réelles d’ordre n quelconque.
2) Montrer que ψ est un produit scalaire sur E.
Énoncez clairement les propriétés de l’application trace que vous utiliserez dans votre réponse.


1
€6,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
abelnezla

Maak kennis met de verkoper

Seller avatar
abelnezla Valenciennes
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
11
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen