100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Summary of Data Science Skills Python DataCamp modules (325235-M-3)

Beoordeling
4,5
(2)
Verkocht
35
Pagina's
83
Geüpload op
24-05-2023
Geschreven in
2022/2023

This document includes all modules of the DataCamp modules for Data Science Skills.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
24 mei 2023
Aantal pagina's
83
Geschreven in
2022/2023
Type
Samenvatting

Voorbeeld van de inhoud

Summary data science skills
Inhoud
Course 1: Introduction ............................................................................................................................. 3
1.1 Python basics ................................................................................................................................. 3
1.2 Python lists .................................................................................................................................... 3
1.3 Functions and packages................................................................................................................. 5
1.4 Numpy (Numeric Python).............................................................................................................. 6
Course 2: Intermediate python ............................................................................................................... 8
2.1 Matplotlib ...................................................................................................................................... 8
2.2 Dictionaries & pandas.................................................................................................................... 9
2.3 Logic, Control Flow and Filtering ................................................................................................. 13
2.4 Loops ........................................................................................................................................... 15
2.5 Case study: hacker statistics ........................................................................................................ 17
2.5 Summary...................................................................................................................................... 19
Course 3: DataFrames............................................................................................................................ 20
3.1 Transforming DataFrames............................................................................................................ 20
3.2 Aggregating DataFrames; Summary statistics ............................................................................. 21
3.3 Slicing and Indexing DataFrames ................................................................................................. 23
3.4 Creating and Visualizing DataFrames .......................................................................................... 25
Course 4: Supply Chain Analytics in Python .......................................................................................... 28
4.1 Basics of supply chain optimization and PuLP ............................................................................. 28
4.2 Modeling in PuLP ......................................................................................................................... 29
4.3 Solve and evaluate model ........................................................................................................... 32
4.4 Sensitivity and simulation testing of model ................................................................................ 34
Course 5: Cleaning Data in Python ........................................................................................................ 38
5.1 Common data problems .............................................................................................................. 38
5.2 Text and categorical data problems ............................................................................................. 41
5.3 Advanced data problems ............................................................................................................. 43
5.4 Record linkage ............................................................................................................................. 46
Course 6: Cluster analysis ...................................................................................................................... 49
6.1 Introduction to clustering ............................................................................................................ 49
6.2 Hierarchical Clustering ................................................................................................................. 53
6.3 K-Means clustering ...................................................................................................................... 56
6.4 Clustering in the real world ......................................................................................................... 59

,Course 7: Machine Learning with scikit-learn (model testing) .............................................................. 63
7.1 Classification ................................................................................................................................ 63
7.2 Regression ................................................................................................................................... 66
7.3 Fine-tuning your model ............................................................................................................... 68
7.4 Preprocessing and pipelines ........................................................................................................ 70
Course 8: Linear classifiers .................................................................................................................... 73
8.1 Applying logistic regression and SVM .......................................................................................... 73
8.2 Loss functions .............................................................................................................................. 75
8.3 Logistic regression ....................................................................................................................... 77
8.4 Support Vector Machines (SVMs in detail) .................................................................................. 80

,Course 1: Introduction
1.1 Python basics
iPython shell = interactive
Python script > text files > use print to generate output
Use a # to add comments in a python script

Calculator




Variables and types
• Variables: named piece of memory that can store a value.
- Syntax: name = value

Usage:
- Compute an expression's result,
- Store that result into a variable,
- And use that variable later in the program.

• Types: Type(‘variable’)
- Float Decimal number
- Integer Whole number
- Strings Text ‘’’’
- Booleans True/False

> Different behaviour using operators for different types of floats.
> When working with different types -> Convert if necessary before using operators.

1.2 Python lists
Lists; store multiple values
• Lists: Lists are used for storing small amounts of one-dimensional data containing different types.



- But, can’t use directly with arithmetical (matrix) operators (+, -, *, /, ...).
- If you need efficient arrays with arithmetic and better multidimensional tools.

• Sublists: One list can contain more sublists

, Subsetting lists (access information in a list; indexes)

• Element: The number in a list. 1.68 is the fourth element
• Index: The index of an element in the list, it starts at 0. 1.68 has index 3



> To select an element using indexing: Fam[3] gives ‘1.68’
> Negative indexes Fam[-1] gives ‘1.89’

• Slicing: Select multiple elements in a list and creating a new list
Example: fam [3:5] returns [1.68, ‘mom’] (element 3 and 4)

> [Start ; End] -> Start is included, End is excluded!
> [:4] returns indexes 0, 1, 2 and 3 (elements 1, 2, 3, 4)
> [5:] returns indexes 5, 6, 7 (elements 6, 7, 8)




Subsetting lists of lists
x = [["a", "b", "c"],
["d", "e", "f"],
["g", "h", "i"]]
X[rows][columns]
x[2][0] Returns: ‘g’ (sublist 2 , index 0)
x[2][:2] Returns: [‘g’, ‘h’] (sublist 2 , index 0 and 1)
Manipulation Lists (update lists for commands)
• Changing the elements in a list (e.g. change, add, remove elements)


1. Change: Fam [7] = 1.86 Changes the height of dad
2. Change slice: Fam [0:2] = [“Lisa”, 1.74] Changes the 0 and 1 index

3. Adding/extend: Fam + [“me”, 1.79] Adds ‘me’ and 1.79 to the list

4. Remove: del(fam[2]) Removes “emma from the list”
> Watch out because the indexes of the list have now changes!

How lists work




> x and y are the referred to the same list. > Solution: create y as a new list.

Beoordelingen van geverifieerde kopers

Alle 2 reviews worden weergegeven
1 jaar geleden

2 jaar geleden

4,5

2 beoordelingen

5
1
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
jesmen12 Tilburg University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
138
Lid sinds
3 jaar
Aantal volgers
70
Documenten
13
Laatst verkocht
3 weken geleden

4,0

10 beoordelingen

5
4
4
2
3
4
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen