100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Rekenen-wiskunde in de bovenbouw

Beoordeling
4,5
(2)
Verkocht
18
Pagina's
15
Geüpload op
10-03-2013
Geschreven in
2011/2012

Samenvatting van 15 pagina's voor het vak Rekenen / Wiskunde in de bovenbouw aan de InHolland










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
10 maart 2013
Aantal pagina's
15
Geschreven in
2011/2012
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Samenvatting Rekenen- en wiskunde in de bovenbouw
Inhoud:
Hele getallen
- B deel: bladzijde 123 t/m 149
- C deel: bladzijde 198 t/m 217
Gebroken getallen
- B deel: bladzijde 42 t/m 131
Verhoudingen en procenten
- B deel: bladzijde 54 t/m 120



Hele getallen, reken-wiskundedidactiek

4.1 Gecijferdheid in de bovenbouw
Vanaf groep 5  voortgezet rekenen. Er wordt gerekend met grotere getallen en bewerkingen worden uitgebreid
met schatten, kolomsgewijs rekenen, cijferen en rekenen met rekenmachine. Breuken en verhoudingen. Het hierbij
aanleren van een brede begripsbasis is van belang. Daarom blijf er veel aandacht uitgaan naar betekenis van
getallen en bewerkingen. Zo wordt de gecijferdheid in de bovenbouw verder ontwikkeld.

4.1.1 Getallen
Kinderen leren om zich een beeld te vormen bij grote getallen. Hierbij spelen dingen als aantallen, schatten, maten
en meten een belangrijke rol. Ook blijft er aandacht bestaan voor de interne en externe structuren van getallen.
Hiervan kan gebruik gemaakt worden bij allerlei vormen van rekenen: handig, flexibel en kolomsgewijs rekenen.

4.1.2 Bewerkingen
Nadat basisbewerkingen zijn aangeleerd m.b.v. basisstrategieën rijgen en splitsen, komt er steeds meer aandacht
voor flexibel inzetten van verschillende strategieën. Het is –naast eigen vaardigheid – afhankelijk van de getallen in
de opgave welke strategie handiger is om te gebruiken. Verticale mathematisering: proces van op steeds
geavanceerder manieren leren oplossen van rekenwiskundige opgaven. (leren flexibel en handig te rekenen, leren
verkorten)

4.1.3 Toepassingen
Onder gecijferdheid valt ook het weten welke bewerking(-en) moet(-en) worden uitgevoerd bij een opgave.
Horizontaal mathematisering: het vertalen van een reële situatie (context) naar een formele wiskundige opgave en
omgekeerd.

4.2 Schattend rekenen
Vooral in dagelijks leven speelt dit een belangrijke rol. Het is een belangrijke vaardigheid. Op school komt het in
allerlei varianten aan bod. Er wordt eerst geschat in contexten en pas later met formele opgaven. Analoog aan
leerproces van schatten leren kinderen getallen afronden.

4.3 Kolomsgewijs rekenen en cijferen
Naast hoofdrekenen en schattend rekenen gaat in bovenbouw steeds meer aandacht uit naar precies rekenen op
papier. Grofweg kun je twee manieren onderscheiden:
-Kolomsgewijs rekenen
- Cijferend

Kolomsgewijs rekenen: gerekend met hele getallen: met waardes van getallen.
Kinderen hebben dus zicht nodig op de interne structuur van de getallen. Sluit aan op het splitsen.
Deel van oplossingsmethode kun je zelfs zien als splitsen, waarbij alleen de notatie anders is: onder
elkaar geschreven. Rijgen van getallen wordt ook toegepast, namelijk bij optellen van de tussenantwoorden.

Cijferen: wordt niet gerekend met waardes van getallen, maar met losse cijfers. Positiewaarde wordt dus eigenlijk
genegeerd. Voordeel hiervan: het zijn kleine denkstapjes en het levert, mits foutloos uitgevoerd, gegarandeerd een
correcte uitkomst. Nadeel: het ‘foutloos uitvoeren’ betekent dat een aantal vrij abstracte denkhandelingen moet
worden uitgevoerd, zoals onthouden en inwisselen. Het risico bestaat dan dat leerlingen die op zich vaardig cijferen,
het hoofdrekenen gaan verwaarlozen. Dit kun je soms zien door het optreden van standaardfouten. Het cijferen start
in de huidige reken-wiskundemethodes in groep 6. Ook dit kan soms nog te vroeg zijn: ze zijn er nog niet aan toe om
deze abstracte stap te zetten.




1

, 4.3.1Rekenen met tekorten
Standaardmoeilijkheid bij splitsend aftrekken is omgaan met het overbruggen van het tienvoud (honderdvoud enz.),
Zoals 54 – 27. Dezelfde moeilijkheid kom je tegen bij kolomsgewijs en cijferend aftrekken. Hierbij kan dan het
inwisselen worden toegepast bij tientaloverschrijding. Dat kan natuurlijk pas wel als een leerling toe is aan het
cijferen.

Bij het kolomsgewijs rekenen met tekorten kan een leerling als volgt te werk gaan:

374
286 -
____
100
- 10
- 2
____
100 – 10 – 2 = 88.

4.3.2 Waardeschema en positieschema
Mogelijke aanpak van deze moeilijkheden bij rekenen met tekorten is het gebruik van schema’s of (nep-)geld. Het
positieschema of waardeschema kan worden ingezet. Bij leerproces van cijferen kan een positieschema worden
gebruikt.

300 70 4 Waardeschema
200 80 6 -




Positieschema




Kijken we naar het leerproces van kinderen in de bovenbouw, dan treden daarin vrij grote verschillen op. Sommige
kinderen snappen het sneller dan anderen. Verschillen die daaraan ten grondslag liggen zijn verschillen in
abstractievermogen, maar ook verschillen in leerstijl en in wendbaarheid van de voorkennis die ze in de bovenbouw
tot hun beschikking hebben. Voor de leerkracht in de bovenbouw betekent dat: al dit soort varianten van
oplossingsstrategieën flexibel in kunnen zetten.

Aan de verschillende oplossingsstrategieën liggen ook verschillende inzichten in hoe kinderen leren ten grondslag.
Twee belangrijke stromingen:
- De handelingsleerpsychologie: vat rekenen op als proces in het uitvoeren van handelingen. Handelingen worden
eerst uitgevoerd met materiaal, materiële handelingen. Volgende stap is verwoorden van handelingen,
gematerialiseerde handelingen. Laatste stap is het volledig uitvoeren van alle stappen in het hoofd,
denkhandelingen: handelingen zijn geïnternaliseerd. De abacus werd hierbij ingezet als hulpmiddel voor cijferend
leren optellen en aftrekken. Deze werkwijze was alleen niet erg inzichtelijk en het leverde veel kinderen moeilijkheden
op in hun leerproces. Het idee van handelingen internaliseren is ook te herkennen in het gebruik van het rekenrekje.
Werkt veel beter, omdat gebruik wordt gemaakt van verschillende getalstructuren en doordat dit samengaat met
betekenisverlenende contexten.
- Een constructivistische benadering: vat leren op als proces van opbouwen en ontwikkelen van eigen kennis. Wordt
naast uitvoeren van rekenhandelingen ook opgevat als proces van probleemoplossen of informatieverwerkingen.
Kinderen ontdekken belangrijke wiskundige ontwikkelingen en ideeën zelf opnieuw: geleide herontdekking. Rol van
leerkracht is erg belangrijk hierbij. O.i.v. deze stroming zijn contexten belangrijk geworden in het reken-
wiskundeonderwijs. Betekenisvolle problemen helpen kinderen hun eigen kennis te construeren.

4.4 Cijferen of de rekenmachine gebruiken
In deze discussie spelen verschillende argumenten een rol: maatschappelijk belang van cijferen, tijd die het kost om
cijferen te leren en in te oefenen, moeilijkheid van leren cijferen, opbouw van leerproces en wiskundige waarde van
kunnen cijferen. Ondertussen is in het basisonderwijs wel tijd en aandacht gekomen voor gebruik van rekenmachine:
om te leren omgaan met de rekenmachine als rekenhulpmiddel, maar het is veel meer dan een vervanging voor
het cijferen: heeft ook een onderzoeksfunctie en didactische functie. Hiervan leren ze bewerkingen te doorzien. Het
draagt bij aan hun groei in gecijferdheid.



2

Beoordelingen van geverifieerde kopers

Alle 2 reviews worden weergegeven
11 jaar geleden

12 jaar geleden

Duidelijk beschreven

4,5

2 beoordelingen

5
1
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
femmmmmke Hogeschool InHolland
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
947
Lid sinds
12 jaar
Aantal volgers
570
Documenten
18
Laatst verkocht
5 maanden geleden

Hoi allemaal! <br /><br /><br /> <br /><br /><br /> Mijn naam is Femke, 20 jaar en 4e jaars PABO studente op InHolland! <br /><br /><br /> Op mijn profiel kun je allerlei samenvattingen vinden van de te leren stof voor een bepaalde toets of samenvattingen van een heel boek. <br /><br /><br /> <br /><br /><br /> Hopelijk hebben jullie er iets aan & leerse! :) <br /><br /><br /> <br /><br /><br /> Liefs, <br /><br /><br /> Femke

Lees meer Lees minder
3,9

132 beoordelingen

5
33
4
62
3
30
2
3
1
4

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen