100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Stochastic Processes II - Lecture Notes

Beoordeling
-
Verkocht
-
Pagina's
28
Geüpload op
06-05-2023
Geschreven in
2010/2011

Columbia Business School - First Year of the Doctoral Program in Decisions, Risk and Operations • Stochastic processes o Notes from Prof Assaf Zeevi's "Foundations of Stochastic Modelling". o Notes from Prof David Yao's "Stochastic Processes II".

Meer zien Lees minder
Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Vak

Documentinformatie

Geüpload op
6 mei 2023
Aantal pagina's
28
Geschreven in
2010/2011
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Stochastic Processes II Page 1



STOCHASTIC PROCESSES II

PART I – MARTINGALES


Conditional expectations
 Measure theory
o In a probability space (W,  , ) , a sigma field  is a collection of events, each of
which as a subset of W . It satisfies (i) Æ Î  (ii) A Î   Ac Î  (iii)
Ai Î   Èi¥=1 Ai Î  . Notes:
 (i) and (ii)  W Î 

( )
c
¥ ¥
  A =
i =1 i
Ac , so also closed under infinite (and finite) intersection.
i =1 i


o A random variable maps X (w) : W   . When we say X is measurable with
respect to  and write X Î  , we mean {w : X (w) £ x } Î  "x .

 Conditional expectations
o (X | Y ) is a random variable. (X | Y )(w) =  (X | Y = Y (w)) . In other words,

the fact Y = Y (w) “reveals” a “region” of W in which we are located. We then
find the expected value of X given we are in that “region”.
 In terms of the definition below, we can write (X | Y ) = (X | s(Y )) ,
where s(Y ) is the sigma-field generated by Y – in other words,

s(Y ) = {{w : Y (w) £ x } : x Î } – every event can would be revealed by

Y.
o W = (X | ) is a random variable. (X | )(w) is a bit harder to understand –
effectively, it takes the expectation of X over the smallest  that contains w . In
other words, let A be the smallest element of  that contains w – then we
restrict ourselves to some region of W and find the expectation over that region;
(X |  )(w) = (X A ) . Formal properties:




Daniel Guetta

,Stochastic Processes II Page 2


 W Î  : information as to where we are in W only ever “reaches” us via
knowledge of which part of  we’re in, so this is obvious.
  (W A ) =  (X A ) for all A Î  : we are now restricting ourselves to a

region of W that is  -measurable. Provided A is the smallest element for
which w Î A , W (w) = (X A ) , and the result follows trivially. (If it is
not the smallest element, the result requires additional thought).
o Some properties
i.  éêëX |  ùúû if X Î 

ii.  éê  éêëX |  ùúû ùú = (X )
ë û
iii.  (XZ |  ) = Z  (X |  ) if Z Î 

iv. Tower:  éê  (X |  ) |  ùú =  (X |  ) if  Í  : in this case,  is “more
ë û
descriptive” than  , so the result makes sense.

( ( ) )
Proof: Use    (X |  ) |  A =   (X |  ) A ( ) for A Î  . Then use

the fact that A Î  to show this is equal to  (X A ) . 

v. Linearity

(
vi. Jensen’s: for convex f,  éêë f (X ) |  ùûú ³ f  éêëX |  ùúû )
o Notes
  éêëX ùúû =  éêëX | {Æ, W}ùúû (the RHS is a constant, because whatever w we

choose, the only element of {Æ, W} that contains it will be W ). Thus, (ii)
is a special case of (iv).
 Integrability of X implies integrability of  éêëX |  ùûú :
(vi) (ii)
 
é
ë
ù
û ë (
 ê (X |  ) ú £  éê  X |  )ù =  X
ûú ( )
o Example: Let W be countable. Let  = {1 , 2 , } be a partition of W , and 
å w Î i X ( w )( w )
be the set of all subsets of  . Then (X |  ) takes value ( i )
with

probability (i ) .




Daniel Guetta

, Stochastic Processes II Page 3


Proof: Clearly, the RV is  measurable, because each value it can take is

defined by a i . Also,  éêë (X | )A ùûú is the expected value over those i Í A .

Clearly, =  éëêX A ùûú . 



Martingales
 Definition: {Xn } is a sub-martingale with respect to {n } (where n Î n+1 ) if
i. X n Î n
ii. (X n ) < ¥ [it is often convenient to work with the stronger condition

 Xn < ¥ ].

iii.  éëêXn +1 | n ùûú ³ Xn [< gives a super-martingale, = gives a martingale]. Implies the

weaker property  éêëXn +1 ùûú ³  éëêXn ùûú

 Remarks:
o A convex function of a martingale is a submartingale.
o An increasing convex function of a submartingale is a submartingale.
Proof: (i) and (ii) are simple.  éêë f (Xn +1 ) | n ùúû ³ f ( [Xn +1 | n ]) ³ f (Xn ) . 

å
n
 Example: Let S n = i =1
X i , where the Xi are IID with (Xi ) = 0,  Xi < ¥
o Sn is a martingale [  Sn £ n  X1 ] (the mean martingale).

o If ar(X i ) = s 2 < ¥ , X n2 - s 2n is a martingale (the variance martingale). 
qX1 qSn
 Example (the exponential martingale): Let j(q) = (e ) . Mn = e / jn (q) is a

å
n
martingale. For example, if S n = i =1
Xi is an asymmetric random walk with

( )
Sn
1-p
p = (X i = 1) = 1 - (X i = -1) , then M n = p
is an exponential martingale, with
1-p
eq = p
and j(q) = 1 . 
 Example: Suppose an urn starts with one black and one white ball. We pull out balls
from the urn, and return them to the urn with another, new ball of the same color. Yn,
the proportion of white balls after n draws, is a martingale (mean ½). 
 Example: Let {Xn } be a Markov Chain with transition matrix P(x, y) and let h(x) be a
bounded function with h(x ) = å y p(x, y )h(y ) . {h(Xn )} is then a martingale. 




Daniel Guetta
€2,62
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
tandhiwahyono
2,0
(1)

Maak kennis met de verkoper

Seller avatar
tandhiwahyono University of Indonesia
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
8
Lid sinds
3 jaar
Aantal volgers
8
Documenten
861
Laatst verkocht
1 jaar geleden
iKnow

The iKnow store provides course materials, study guides, study notes, lecture notes, textbook summaries and exam questions with answers, for levels from high school students to universities and professionals. Everything with the best quality and world class.

2,0

1 beoordelingen

5
0
4
0
3
0
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen