100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Analyse 1 - Cours 1

Beoordeling
-
Verkocht
-
Pagina's
131
Geüpload op
25-03-2023
Geschreven in
2020/2021

cours de l analyse 1 qui detaille le cours de mathematique il faut bien lire pour valide le module

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
25 maart 2023
Aantal pagina's
131
Geschreven in
2020/2021
Type
College aantekeningen
Docent(en)
Alabkari
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

ww
w.
all
oa




1
c
Analyse 1
ad
em
y.c
om

, m
Préambule




o
y.c
L’objectif de ce cours est de faire une transition entre les connaissances en analyse accumulées
au lycée et les bases qui formeront un des piliers dans la formation en analyse mathématique de
la licence. Etant donné que le recrutement en première année d’analyse est assez hétérogène, il
semble assez judicieux de commencer par rappeler les notions élémentaires qui serviront tout au




em
long de ce cours, histoire de ne perdre personne en route.
Quand il sera nécessaire au début de chaque chapitre, nous rappellerons ce qui est censé être connu
en terminal. Nous essaierons également dans la mesure du possible de fournir l’essentiel des ré-
sultats de chaque chapitre sur une page, histoire de synthétiser les connaissances à bien maîtriser
pour passer au chapitre suivant.
Nous fournirons autant d’exemples et de figures nécessaires afin d’obtenir une meilleure compré-
hension du cours. Nous essaierons également de souligner les pièges dans lesquels chacun peut se
ad
fourvoyer soit par inattention, soit par une mauvaise maîtrise du cours.
c
oa
all
w.
ww




2

, o m
y.c
Table des matières




em
1 Les réels 7
1.1 Un peu d’histoire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Introduction aux nombres réels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Quelques règles de calcul . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Intervalles de R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Voisinage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
ad
1.5 Bornes supérieures, inférieures, maximum et minimum . . . . . . . . . . . . . . . 16
1.6 Valeur absolue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 Partie entière . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Les fonctions d’une variable réelle 21
c
2.1 Notions de bases sur les fonctions . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Quelques propriétés des fonctions . . . . . . . . . . . . . . . . . . . . . . . . . . 26
oa

2.2.1 Les opérations algébriques . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 La restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Fonctions définies par morceaux . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4 Fonctions majorées, minorées, bornées . . . . . . . . . . . . . . . . . . . 27
2.3 La composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
all


2.3.1 Monotonie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Parité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.3 Fonctions périodiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Injectivité, surjectivité, bijectivité . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
w.




3 Limites d’une fonction 41
3.1 Limites finie d’une fonction en un point . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Limites infinie d’une fonction en un point . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Limites à droite, limite à gauche . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Limites d’une fonction en +∞ ou −∞ . . . . . . . . . . . . . . . . . . . . . . . . 46
ww




3.5 Propriétés des limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.1 Unicité de la limite, majoration, minoration . . . . . . . . . . . . . . . . . 47
3.5.2 Limites et comparaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Opérations algébriques sur les limites . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.1 Limite d’une somme de fonctions . . . . . . . . . . . . . . . . . . . . . . 50
3.6.2 Limite d’un produit de fonctions . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.3 Limite d’un quotient de fonctions . . . . . . . . . . . . . . . . . . . . . . 51
3

, m
TABLE DES MATIÈRES TABLE DES MATIÈRES



3.7 Autres propriétés sur les limites . . . . . . . . . . . . . . . . . . . . . . . . . . . 51




o
3.7.1 Limite et composée . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7.2 Limite et monotonie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52




y.c
3.7.3 Critère de Cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Quelques fonctions usuelles 55
4.1 Fonction constante . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Fonction identité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Fonction valeur absolue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57




em
4.4 Fonction partie entière . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Fonction puissances entières n ∈ N . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 Fonction polynôme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.7 Fonction racine n-ième, puissance rationnelle . . . . . . . . . . . . . . . . . . . . 61
4.8 Fonction homographique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.9 Fonction logarithme népérien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.10 Fonction exponentielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
ad
4.11 Fonctions circulaires (ou trigonométriques) . . . . . . . . . . . . .
4.11.1 Fonction sinus . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
68
68
4.11.2 Fonction cosinus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.11.3 Fonction tangente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.11.4 Fonction cotangente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
c
4.12 Fonctions hyperboliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.12.1 Fonction cosinus hyperbolique . . . . . . . . . . . . . . . . . . . . . . . . 71
oa

4.12.2 Fonction sinus hyperbolique . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.12.3 Fonction tangente hyperbolique . . . . . . . . . . . . . . . . . . . . . . . 73
4.12.4 Fonction cotangente hyperbolique . . . . . . . . . . . . . . . . . . . . . . 73
4.13 Fonctions réciproques usuelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.13.1 Réciproque d’une fonction homographique . . . . . . . . . . . . . . . . . 75
all


4.13.2 Réciproque de la fonction sinus : la fonction arc sinus . . . . . . . . . . . 76
4.13.3 Réciproque de la fonction cosinus : la fonction arc cosinus . . . . . . . . . 77
4.13.4 Réciproque de la fonction tangente : la fonction arc tangente . . . . . . . . 78
4.13.5 Propriétés des fonctions arc sinus, arc cosinus et arc tangente . . . . . . . . 80
4.13.6 Equations du type sin(x) = a, cos(x) = a et tan(x) = a . . . . . . . . . . 80
w.




4.13.7 Réciproque des fonctions sh et th . . . . . . . . . . . . . . . . . . . . . . 81

5 Continuité des fonctions 83
5.1 Caractérisation de Weierstrass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Continuité, opérations algébriques et composition . . . . . . . . . . . . . . . . . . 85
ww




5.3 Théorèmes sur la continuité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4 Continuité, monotonie, injectivité et bijectivité . . . . . . . . . . . . . . . . . . . . 88

6 Dérivée d’une fonction 91
6.1 Définition de la dérivabilité de f . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Dérivabilité et continuité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3 Dérivabilité, opérations algébriques et composition . . . . . . . . . . . . . . . . . 94
4
€7,45
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
ayoubaithnina

Maak kennis met de verkoper

Seller avatar
ayoubaithnina
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
1
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen