100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Financial Modelling & Derivatives 2023 - Summary of ALL Lectures

Beoordeling
-
Verkocht
1
Pagina's
26
Geüpload op
21-03-2023
Geschreven in
2022/2023

Summary of all 2023 Financial Modelling & Derivatives Lectures - VU IBA Financial Management Specialisation.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
21 maart 2023
Aantal pagina's
26
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Lecture 1, Recap finance 1
The net present value NPV (time value of money):

Ct
PV 0 ( C t )=
( 1+ r )t

Growing perpetuity (continues forever) (first payment next period):

C1
PV 0=
r−g

Annuity (fixed term) (first payment next period, payments for t periods):

C1 1
PV 0= [1− ]
r (1+r )t

Growing annuity:


( )
C1 1+ g t
PV 0= [1− ]
r−g (1+r )


Lecture 2, Asset returns and volatility portfolio’s
2.1 Expected returns and volatility
Realized returns are the returns that actually occur over a particular time period.
Return = dividend yield + capital gain rate. In formula:

¿t +1 + Pt +1 ¿ P −Pt
Rt +1= −1= t +1 + t +1
Pt Pt Pt

The expected (mean) return is calculated as a weighted average of the possible returns,
where the weights correspond to the probabilities.

Expected return=E [ R ] =∑ P R ∙ R
R


The variance is the expected squared deviation from the mean.

Var ( R )=E ¿

The standard deviation is the root of the variance.

SD ( R )=√ Var (R)

,In finance, the standard deviation (σ ) of a return is also referred to as its volatility. The
standard deviation is easier to interpret because it’s in the same unit as the return itself.
Volatility is mostly measured in % per annum. It’s a measure of uncertainty about asset
returns.

Scaling of the volatility with different periods can be done by:
σ T periods=σ 1 period ∙ √ T for example, σ T annual=σ monthly ∙ √ 12
σ annual
and σ Tmonthly =
√12

2.2 Historic returns and volatility
When estimating the expected return, we use historical data to predict the future by taking
the average return.

T
1 1
R= ( R1 + R2 +…+ R T ) = ∑ Rt
T T t =1

When estimating the variance or the standard deviation using realized historical returns, we
use:

T
1
Var ( R )= ∑
T −1 t=1
( R t−R )
2




SD ( R )=√ Var (R)

The standard error is a statistical measure of the degree of estimation error.

SD ( R )
SE= Where T is the number of observations.
√T
The 95% confidence interval of the expected returns is approximately:
Historical average return ±1.96 ∙ standard error

2.3 Portfolios
A portfolio is a collection of assets. For example, gold, bonds, shares, real estate, etc.

Portfolio weights are the fractions of the total investment in the portfolio held in each
individual investment in the portfolio. The portfolio weights add up to 1.00 or 100%.

value of investment i
x i=
Total value of portfolio

, The return of a portfolio, Rp, is the weighted average of the returns on the investments in the
portfolio, where the weights correspond to portfolio weights:

R p =x1 R1 + x1 R2 +…+ x n R n=∑ x i R i
i


The expected return of a portfolio is the weighted average of the expected returns on the
investments in the portfolio:

E [ R¿¿ p]=∑ x i E [Ri ]¿
i



2.4 Diversification
Diversification lowers the risk in both directions: downward and upward. So, smaller losses,
but also smaller gains. Diversification eliminates stock specific risk.

2.5 Covariance and correlation
The amount of risk that is eliminated in a portfolio depends on the degree to which the
stocks face common risks and their prices move together.

The covariance is the expected product of the deviations of two returns from their expected
value:

Cov ( Ri , R j ) =E[ ( R i−E [ Ri ] )( R j−E [ R j ] ) ]

Historical covariance (estimate) between returns R i and Rj:

T
1
Cov ( Ri , R j ) = ∑ ( R −Ri ) ( R j , t−R j )
T −1 t=1 i , t

If the covariance is positive, the two returns tend to move together.
If the covariance is negative, the two returns tend to move in opposite directions.

The correlation is a measure of the common risk shared by stocks that does not depend on
their volatility.

Cov ( R i , R j )
Corr ( Ri , R j )= ρi, j =
SD (Ri )∙ SD (R j )

The correlation between two stocks is always between -1 and +1. It measures a linear
relationship between Ri and Rj. If Ri changes by p%, we expect Rj changes by ρi , j ∙ p %
€7,94
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
TiborB Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
31
Lid sinds
5 jaar
Aantal volgers
26
Documenten
0
Laatst verkocht
2 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen