100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Introducing different properties of the wave function

Beoordeling
-
Verkocht
-
Pagina's
5
Geüpload op
18-03-2023
Geschreven in
2022/2023

Here we start to explore the wave function ( Schrödinger equation). Our hypothetical particle/wave is first placed in an infinite potential well, and we are finding it's energy, and then this followed by a finite potential well.

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Onbekend
Vak

Documentinformatie

Geüpload op
18 maart 2023
Aantal pagina's
5
Geschreven in
2022/2023
Type
College aantekeningen
Docent(en)
James millen
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Quantum Mechanics


March 2023


1 Week 2
1.1 The Wavefunction Equation
Particles behave like waves. They have a wavelength ( according to de Broglie
) λ = hp
Waves should have a wave equation, whose solutions are wave functions.
We are representing this with Ψ which is a function of space, so represented by
3D coordinate r, and time.
Ψ(r, t)
2 2
Using that E = h̄ω = h̄2m
k
we can derive the Wave Function Equation.

∂Ψ(r, t) −h̄2 2
ih̄ = ∇ Ψ(r, t) + V (r)Ψ(r, t) (1)
∂t 2m
We call V(r) the external potential. It’s conservative, which means V(r) is not
V(r,t), meaning it’s not varying in time, A wavefunction is a complex number (
due to the imaginary unit ) and it’s also NOT for photons, due to the mass in it.


1.2 The time independent wavefunction equation
Most waves can be split in to space and time variant.

Ψ(r, t) = Aei(kr−ωt) = Aeikr e−iωt (2)

So we can actually using this idea to write the following:

Ψ(r, t) = ψ(r) ∗ ϕ(t) (3)

Where ψ and ϕ are both wave functions as a wave function can be a combination
of another two.
Now, if we substitute (3) into (1) we get the following:

∂(ψ(r)ϕ(t)) −h̄2 2
ih̄ = ∇ (ψ(r)ϕ(t)) + V (r)ψ(r)ϕ(t) (4)
∂t 2m


1

, Important to know, that when there is a partial with respect to time (∂t) does
not act ( operate ) on the spatial part of the wave function (ψ(r)), and similarly
∇2 does not act on the time part. (ϕ(t))

∂ϕ(t) −h̄2
ih̄ψ(r) = ϕ(t)∇2 ψ(r) + V (r)ψ(r)ϕ(t) (5)
∂t 2m

Now we can rearrange this equation to get all the time parts on one side, and
spatial parts on the other by dividing both side by ψ(r)ϕ(t):
−h̄2 2
ih̄ ∂ϕ(t)
∂t 2m ∇ ψ(r) + V (r)ψ(r)
= (6)
ϕ(t) ψ(r)
Now we have TIME only and SPACE only.
The next trick is to use the separation of variables. To make sure we have units
on each side correctly laid out, each side must be equal to a constant, which we
call separation constant ϵ.
Time part:
1 ∂ϕ(t) −iϵ
= (7)
ϕ(t) ∂t h̄
which clearly leads to
∂ϕ(t) −iϵ
= ϕ(t) (8)
∂t h̄
It has the solution:

ϕ(t) = e−( h̄ )t (9)
This looks like a classical wave! It would have a e−iωt part which is simply the
time part of the classical wave. Therefore we can make the analogy, that h̄ϵ = ω
which is an equation for a matter wave! So the separation constant is simply
the energy of the matter wave ( E ) equals the epsilon! E = ϵ. As long as the
potential doesn’t vary in time, this is the only way the function will!
Now looking at the space part of the equation:
1 −h̄2 2
[ ∇ ψ(r) + V (r)ψ(r)] = E (10)
ψ(r) 2m
2
Therefore, [ −h̄ 2
2m ∇ + V (r)]ψ(r) = Eψ(r) is the Time-Independent Wavefunction
equation!
−h̄2 2
2m ∇ is the Kinetic Energy and V(r) is the Potential Energy.
The term in the square bracket is an operator called Hamiltonian, which we call
H. This simplifies the whole equation to
Hψ(r) = Eψ(r) (11)

Another point to make is that the Kinetic Energy is 21 mv 2 which we can write
p2
as 2m , so we can define a momentum operator:
p = −ih̄∇ (12)


2
€4,14
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
tamasgonda

Maak kennis met de verkoper

Seller avatar
tamasgonda Kings College London
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
2
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen