100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary for 'Algorithmic persuasion' and its readings - exam grade: 8.8

Beoordeling
3,5
(6)
Verkocht
70
Pagina's
33
Geüpload op
13-03-2023
Geschreven in
2021/2022

This contains the summary of the gazilion readings for UvA course 'Algorithmic persuasion' and notes. Readings a.o. include those of Boerman, Zarouali, Matz, Segijn, etc. Everything is organized according to weeks (W1-8), with headers and subheaders. Exam grade: 8.8

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
13 maart 2023
Aantal pagina's
33
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Week 1
Algorithms are encoded procedures for Algorithm
transforming unput data into a desired output, Set of rules to obtain
Input Output
based on specific calculations. the edpected output
from given input

Algorithmic power
(functions)
Four functions
- Prioritization  making an ordered list
o Emphasize or bring attention to certain things at the expense of others (e.g. google page
rank)
- Classification  picking a category
o Categorize a particular entity to given class by looking at any number of the entity's
features (e.g. inappropriate YT content)
- Association  finding links
o Association decisions mark relationships between entities (e.g. Okcupid dating match)
- Filtering  isolating what's important
o Including/excluding info according to various rules/criteria. Inputs to filtering algorithms
often take prioritizing, classification, or association decisions into account (FB TL)

Two broad categories
Rule-based algorithms
- Based on a set of rules/steps
- Typically IF  THEN
- Pro: easy to follow
- Con: only applicable to specified conditions

Machine learning algorithms
- Algorithms that 'learn' by themselves (based on statistical models rather than deterministic rules)
- The algorithms are 'trained' based on a corpus of data from which they may 'learn' to make
certain kinds of decisions without human oversight
- Pro: flexible and amenable to adaptions
- Con: needs to be trained & black-box (at some point you won't understand the output of the
algorithm cause it trained itself)
- Most social media use machine learning algorithms  big corpus of data

Recommender systems
- Recommender systems are algorithms that provide suggestions for content that is most likely of
interest to a particular user
o These algorithms that decide which content to display to who based on certain criteria
o Users hence receive distinct streams of online content
 E.g. FB, Netflix, Spotify, YT, etc.
- Rationale: avoid choice overload, to maximize user relevance, and to increase work efficiency.

,Techniques (types of rec systems)
1. Content-based filtering: these algorithms learn to recommend items that are similar to the ones
that the user liked in the past (based on similarity of items)
2. Collaborative filtering: these algorithms suggest recommendations to the user based on items
that other users with similar tastes liked in the past
3. Hybrid filtering: combine features from both content-based and collaborative systems, and
usually with other additional elements (e.g. demographics)  most common type.

Perceptions of algorithms  appreciation (e.g. blind faith) vs aversion. May depend
on may factors

- Type of task
o E.g. mechanical, objective tasks (efficiency of showing relevant google content) vs
subjective (dating matches) See also lvl of subjectivity.
- Level of subjectivity in decisions
- Individual characteristics
- Etc. (more research needed)

Algorithmic persuasion
Algorithmic persuasion: 'any deliberate attempt by a persuader to influence the beliefs, attitudes and
behaviours of people through online communication that is mediated by algorithms'

Feedback loop of algorithmic persuasion

,Input
- First party data: data you yourself
- Second party data: Google, using data from a collaborative trusted party
- Third party data: external party, data brokerage, specialised in data.



- Explicit data: data we explicitly leave behind (writing our FB profile), we're aware we leave that
behind
- Implicit data: subconsciously: cookies, IP address, search history.

Algorithm
- Techniques (rule-based vs machine learning, different power structures  class, prior, etc.)
- Objective of persuader: changing attitudes, opinions, feelings, behaviours, etc.
- Algorithmic bias
o Developers' bias: they have prejudice.
o Machine learning algorithms are trained on data sets, which can be flawed.

Persuasion attempt
- Context: commercial and non-commercial  corporate comm, health comm, marketing, etc.
- Nature:
o Paid: e.g. sponsored. You paying for getting your ads shown by the algorithm
o Organic: if FB is using its own algorithm to filter your TL, that's organic (non-paid)
- Medium: smartphones, laptop, smart TV, public transport, etc.
- Modality: visual, audio, (audio)visual, conversational (Alexa)

Persuasion process
- Relevance: provide us most relevant content
- Reduction: compressing content is more persuasive  easier to process
- Social norm: show us what peers find relevant
- Automation: we have bias, we over rely on technology.  more vulnerable to alg pers.
- Reinforcement: they are reinforcing previous attitudes  showing us content that fit within our
world view.
- Etc…

Persuasive effects
- Intended: desired, expected
- Unintended: undesired
o Manipulation
o Privacy issues
o Exploitation
o Vulnerable

, Week 2| Online advertising
Paper 1 Boerman: OBA literature overview
OBA: ''The practice of monitoring people's online behaviour and using the collected information to show
people individually targeted advertisements'' Boerman, 2017
OBA (online behavioural advertising) is a sub-group of personalized advertising.
Effects depend on advertiser- and consumer-controlled factors.




Advertiser-controlled
- Ad characteristics
o Level of personalization (extent)
 Type of info used (web-browsing, clicks, basket)
 Amount of info (only 1 type of data or combination)
o Accuracy !!!
- OBA transparency
o Privacy statements and informed consent
 Shows what type of data they use and collect
 have little effect because we don't read them (and hard to understand)
o Disclosure (increasing transparency through self-regulation)
 hardly effective cause we barely recognize the symbol/know what it is)

Consumer controlled factors
- Knowledge and abilities
o Consumers have little knowledge about OBA and hold misconceptions
o Even less knowledge about legal protections (GDPR: EU regulation that protects privacy)
o Consumers do not seem to understand tools to protect online privacy
€7,89
Krijg toegang tot het volledige document:
Gekocht door 70 studenten

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Beoordelingen van geverifieerde kopers

Alle 6 reviews worden weergegeven
1 jaar geleden

1 jaar geleden

2 jaar geleden

Heb het vak gehaald door de samenvatting een paar keer door te lezen

2 jaar geleden

2 jaar geleden

2 jaar geleden

3,5

6 beoordelingen

5
2
4
1
3
1
2
2
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
thaomynguyen Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
73
Lid sinds
7 jaar
Aantal volgers
58
Documenten
8
Laatst verkocht
2 maanden geleden
Summaries for UvA Communication Science

Why write sh*ttons of summaries when others (me) can do it for you? My summaries are neatly organized and contain the required readings and lecture notes.

3,5

6 beoordelingen

5
2
4
1
3
1
2
2
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen