100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Overig

Mathématiques - Généralités sur les fonctions

Beoordeling
-
Verkocht
-
Pagina's
17
Geüpload op
28-02-2023
Geschreven in
2020/2021

Le document traite des généralités sur les fonctions et est structuré en deux unités principales avec une table des matières au début. L'unité 1, intitulée "Notations et rappels", présente les différentes notations mathématiques ainsi que les notions de relations, d'applications, de fonctions et de bijections. Elle contient également des rappels sur les ensembles, avec notamment des définitions et des propriétés. L'unité 2, "Généralités sur les fonctions numériques d'une variable réelle", aborde plus spécifiquement les fonctions numériques d'une variable réelle. Elle débute par des définitions et des notions de domaine de définition, de voisinage et de distance. Elle explique ensuite comment représenter graphiquement une fonction, en traçant sa courbe et en étudiant son sens de variation, ses extréma et son signe. Le document poursuit avec une section sur les limites, en étudiant différents cas tels que les limites en un point ou à l'infini. Il présente également des théorèmes sur les limites des polynômes et des fonctions rationnelles, ainsi que des propriétés des limites. Enfin, la section sur la continuité définit cette notion et présente quelques théorèmes la concernant. Dans l'ensemble, ce document constitue un guide pratique pour comprendre les fonctions mathématiques, en commençant par les notions de base comme les ensembles et les notations, et en allant jusqu'aux concepts plus avancés comme les limites et la continuité. Il offre ainsi une vue d'ensemble cohérente et détaillée de ce sujet clé des mathématiques.

Meer zien Lees minder
Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
28 februari 2023
Aantal pagina's
17
Geschreven in
2020/2021
Type
Overig
Persoon
Onbekend

Onderwerpen

Voorbeeld van de inhoud

L1-SDG-Mathématiques 1 P. Loup - L. Bonifas




Module 1:
Généralités sur les fonctions

Table des matières

Unité 1 - Notations et rappels.................................................................................................... 2
I - Notations mathématiques ............................................................................................................ 2
II - Rappels sur les ensembles .......................................................................................................... 2
1 ) Définition............................................................................................................................................... 2
2 ) Propriétés et notations ............................................................................................................................ 2
III - Notions de Relations – Applications – Fonctions – Bijections ............................................... 4
1 ) Relation ................................................................................................................................................. 4
2 ) Application ............................................................................................................................................ 4
3 ) Fonction ................................................................................................................................................. 5
4 ) Bijection ................................................................................................................................................ 5
Unité 2 - Généralités sur les fonctions numériques d’une variable réelle .............................. 6
I - Définitions..................................................................................................................................... 6
II - Domaine de définition ................................................................................................................ 6
III - Notion de voisinage et de distance ........................................................................................... 7
1 ) Voisinage ............................................................................................................................................... 7
2 ) Distance ................................................................................................................................................. 7
3 ) Signification de x tend vers x0 sur un intervalle..................................................................................... 8

IV - Représentation graphique ........................................................................................................ 8
1 ) Tracé de la fonction................................................................................................................................ 8
2 ) Sens de variation d’une fonction : .......................................................................................................... 9
3 ) Extremum : ............................................................................................................................................ 9
4 ) Signe d’une fonction : ............................................................................................................................ 9
V - Limites ....................................................................................................................................... 10
1 ) Etude d’un exemple.............................................................................................................................. 10
2 ) Limite en a ......................................................................................................................................... 10
3 ) Limite à droite et limite à gauche ......................................................................................................... 11
4 ) Limite infinie en un point ..................................................................................................................... 12
5 ) Limite à l’infini .................................................................................................................................... 13
6 ) Propriétés des limites ........................................................................................................................... 14
7 ) Théorème sur les limites des polynômes :............................................................................................. 15
8 ) Théorème sur les limites des fonctions rationnelles .............................................................................. 15
VI - Continuité ................................................................................................................................ 16
1 ) Définition............................................................................................................................................. 16
2 ) Théorèmes ........................................................................................................................................... 17




Page

,L1-SDG-Mathématiques 1 P. Loup - L. Bonifas



Module 1:
Généralités sur les fonctions



Unité 1 - Notations et rappels


I - Notations mathématiques

 : quelque soit (quantificateur universel).
 : il existe (quantificateur existentiel)
 : implique ou entraine.
 : équivalent.
 : l’ensemble vide (ne contient aucun élément).


II - Rappels sur les ensembles


1 ) Définition


Définition :
Un ensemble est une collection ou un groupement d'objets distincts ; ces objets
s'appellent les éléments de cet ensemble



2 ) Propriétés et notations

Soit E un ensemble.

Soient A et B deux sous-ensembles de E

- Inclusion : on dit que A est inclus dans B, lorsque tout élément de A est élément de B,
on utilise la notation suivante : A  B .
Notation mathématique : x  E , x  A  x  B

- Egalité : on dit que A et B sont égaux, A = B ,lorsque A  B et B  A




Page

, L1-SDG-Mathématiques 1 P. Loup - L. Bonifas


- Intersection : on définit l’intersection entre les ensembles A et B, notée A  B , de
la manière suivante : A  B =  x  E / x  A et x  B




Intersection des ensembles A et B




- Réunion : on définit l’union entre les ensembles A et B, notée A  B , de la manière
suivante : A  B =  x  E / x  A ou x  B




L'union des ensembles A et B


- Complémentaire : on appelle complémentaire de l’ensemble A dans E, l’ensemble noté
A défini de la manière suivante : A =  x  E / x  A

- Produit : on appelle produit de l’ensemble A par l’ensemble B, noté A  B , l’ensemble
défini de la manière suivante : A  B = ( x, y) / x  A et y  B

- Cardinal : on appelle cardinal de A, noté Card ( A) , le nombre d’éléments contenu dans
A.
Card () = 0
Card ( A  B) = Card ( A) + Card ( B) − Card ( A  B )




Page
€5,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
vivin02pro

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
vivin02pro Montpellier I
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
8
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen