100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
College aantekeningen

Frequency Control in a Power System: Solution of non-linear algebraic equations

Beoordeling
-
Verkocht
-
Pagina's
5
Geüpload op
28-02-2023
Geschreven in
2020/2021

Module 3: Frequency Control in a Power System Lecture 12a: Solution of non-linear algebraic equations Non-linear algebraic equations and their solution In the following lecture, given the load characteristics, we will compute the steady-state frequency of a power system. We shall see that this will require us to carry out a "load flow". A loadlfow involves the solution of a set of non-linear algebraic equations. Therefore, we revise the basic methods to solve non-linear algebraic equations in this lecture.

Meer zien Lees minder
Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
28 februari 2023
Aantal pagina's
5
Geschreven in
2020/2021
Type
College aantekeningen
Docent(en)
Prof. s.a. soman
Bevat
Lecture 12 - b

Onderwerpen

Voorbeeld van de inhoud

Module 3 : Frequency Control in a Power System

Lecture 12a : Solution of non-linear algebraic equations

Non-linear algebraic equations and their solution

In the next lecture, we will compute the steady state frequency of a power system, given the
load characteristics. We shall see that in general, this will require us to carry out a "loadflow".
A loadlfow involves the solution of a set of non-linear algebraic equations. Therefore, in this
lecture we revise the basic methods to solve non-linear algebraic equations.

We are aware that a transmission network in sinusoidal state state can be modelled by linear
algebraic equations in the node voltage phasors(V) and the nodal current phasor injections
(I):



where Ybus is the bus admittance matrix.

However, in power system studies, nodal injections are not specified as current phasors but as
real and reactive power injections (nonlinear functions of V and I) , and/or voltage
magnitudes of some nodes. We have also seen that real and reactive power can be a function
of frequency. In such a situation, obtaining the steady state solution (i.e. node voltage
phasors and frequency) will require us to solve a set of non-linear equations.

Therefore we take a silight diversion from the main theme and review why and how we use
numerical techniques for solving non-linear algebraic equations.

Let us consider the "why" question first. If we wish to solve an equation of the form:



Perhaps, "simplifying" it will help us solve it ?



Perhaps, if we take the natrual logarithm of both sides we may be able to do something ?



But soon enough you will realize that we seem to be getting nowhere !

It is clear that some other way (guess work ?) may be required to get the solution.


ixed Point Iteration Method

Since we have some idea of how the exponential function behaves we can try to guess the solution. We
know that:

, and



and




We can guess that the solution for should lie between 0.5 and 1.

However, this is a rough estimate. Surprisingly if we take an initial guess value :



and iterate as follows starting with k=0:



then x1=0.606, x2=0.545 , x3= 0.579, x4=0.5600, x5=0.571, x6=0.565, x7=0.568, x8=0.566, x9=0.567 ....

We seem to be "converging" to a solution which satisfies the equation !

Why does the Fixed Point Iterative Method Work ?

We can try to understand why we converge to the right solution by examining the behaviour of the iterative
method

near the solution. Suppose the correct solution to the equation is x = xs , i.e.,



Suppose the value of x at the kth iteration is near the solution xs and differs from it by a small amount Dxk ,
i.e.,



then:



which yields :



therefore if at k=0, x = xinit then,



Since:
€7,54
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
aakashnln

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
aakashnln indian institute of technology bombay
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
39
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen