100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Summary Beschrijvende Statistiek Hoorcollege 1 (H1.1-1.3&2.1-2.3)

Beoordeling
-
Verkocht
-
Pagina's
7
Geüpload op
12-02-2023
Geschreven in
2022/2023

Dit is een samenvatting voor de leerstof van hoorcollege 1 van Beschrijvende Statistiek in de pre-master Orthopedagogiek aan de Universiteit van Amsterdam. Het behandelt hoofdstuk 1.1 tot en met 1.3 en 2.1 tot en met 2.3 van Statistics van Algresti & Franklin.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
H1 (1.1, 1.2 & 1.3) en h2 (2.1, 2.2 & 2.3)
Geüpload op
12 februari 2023
Aantal pagina's
7
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

1. Gathering and exploring data
1.1. Using data to answer statistical questions
Statistical problem solving is an investigative process that involves 4 components:

- Formulate a statistical question
- Collect data
- Analyse data
- Interpret results

3 main components of statistics for answering a statistical question:

- Design = starting the goals and/or statistical question of interest and planning how to obtain
data that will address them
- Description = summarizing and analysing the data that are obtained
- Inference = making decisions and predictions based on the data for answering the statistical
question

Probability = framework for quantifying how likely various possible outcomes are

1.2. Sample versus population
Subject = entities measured in a study

Population = total set of all the subjects of interest

Sample = subset of the population for whom we (plan to) have data

Descriptive statistics refers to methods for summarizing the collected data. The summaries usually
consist of graphs and numbers such as averages and percentages.

Inferential statistics refers to methods of making decisions or predictions about a population, based
on data obtained from a sample of that population.

- An important aspect of this involves reporting the likely precision of a prediction. How close
is the sample value to the true value of the population?  margin of error

Parameter = numerical summary of the population

Statistic = numerical summary of a sample taken from the population

Random sampling = every subject in the population has the same chance of being included in the
sample

- Allows to make powerful inferences about populations

Randomness is also crucial to performing experiments well (randomization)

Margin of error = measure of the expected variability from one random sample to the next random
sample

‘very likely’ typically means 95 times out of 100  95% confidence interval

1
Approximate margin of error = ×100 %
√n
Random variation is roughly like the margin of error (above formula)

, The difference expected through ordinary random variation is smaller with larger samples

Statistically significant = when the difference between results of treatment and control group is so
large that it would be rare to see such a difference by ordinary random variation

1.3. Using calculators and computers
To make statistical analysis easier, large sets of data are organised in a data file

Two basic rules for constructing a data file:

- Any one row contains measurements for a particular subject
- Any one column contains measurements for a particular characteristic

Database = archived collection of data files

2. Exploring data with graphs and numerical summaries
2.1. Different types of data
Variables = any characteristic observed in a study

- A variable is called quantitative if observations on it take numerical values that represent
different magnitudes of the variable
o Key features to describe:
 Center
 Variability (AKA spread)
o Quantitative variables:
 Discrete = if its possible values form a set of separate numbers
 Continuous = if its possible values form an interval (infinite continuum of
possible values)
- A variable is called categorical if each observation belongs to one of a set of distinct
categories.
o Key feature to describe:
 Relative number of observations in the various categories

Observations = data values that we observe for a variable

The distribution of a variable describes how the observations fall (are distributed) across the range
of possible values

- Can be displayed by a graph or a table
- Features to look for in distribution of categorical variables:
o Modal category = the category with the largest frequency
o And more generally how frequently each category was observed
- Features to look for in distribution of quantitative variables:
o Shape = do observations cluster in certain intervals and/or are they spread thin in
others?
o Center = where does a typical observation fall?
o Variability = how tightly are the observations clustering around a center?

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
sevendeboer Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
17
Lid sinds
2 jaar
Aantal volgers
13
Documenten
17
Laatst verkocht
3 maanden geleden

5,0

2 beoordelingen

5
2
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen