100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Micro - Mockexam 2010 - Part 1 & 2 - Answers

Beoordeling
-
Verkocht
-
Pagina's
5
Geüpload op
11-05-2016
Geschreven in
2010/2011

The official answers for the mockexam 2010









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
11 mei 2016
Aantal pagina's
5
Geschreven in
2010/2011
Type
Tentamen (uitwerkingen)
Bevat
Antwoorden

Voorbeeld van de inhoud

ANSWER KEYS
1. (a) Marginal rate of substitution is (1 − a) x2 /( ax1 ). Marshallian demands are x1 = (1 −
a)y/p1 and x2 = ay/p2 . Indirect utility is u⋆ = [(1 − a)/p1 ]1− a y1− a · [ a/p2 ] a ya = [(1 −
a)/p1 ]1− a · [ a/p2 ] a · y. Hicksian demands are x1 = ū[ p1 a/((1 − a) p2 )]− a and x2 = ū[ p1 a/((1 −
a) p2 )]1− a . Replace ū with the indirect utility to find
x1 = [(1 − a)/p1 ]1− a · [ a/p2 ] a · y[ p1 a/((1 − a) p2 )]− a = p1−1 (1 − a)1− a (1 − a) a y = (1 − a)y/p1
x2 = [(1 − a)/p1 ]1− a · [ a/p2 ] a · y[ p1 a/((1 − a) p2 )]1− a = p2−1 aa a1− a y = ay/p2
as was required.
(b) No, solutions would coincide due to monotonic transformation of u() without changing
the shape of indifference curves. (Cobb Douglas is positive everywhere, so u4 is monotonic
in this case).
(c) From FOC in (a), get Lagrange multiplier primal problem λ = (1 − a) x1− a x2a /p1 and dual
problem µ = p1 [ x1a x2− a ]/(1 − a). Since quantities coincide between problems in the opti-
mum, we do not work these expressions out by inserting the Marshallian and Hicksian
demand functions. Instead, we calculate directly,
λµ = (1 − a) x1− a x2a /p1 · p1 [ x1a x2− a ]/(1 − a) = x1− a x2a x1a x2− a = 1
Thus, multipliers from the two problems are inverses of one another, similar to the dual
and primal problems being reciprocal in nature. µ⋆ gives the additional budget that is
needed when utility is increased infinitesimally (marginal cost of utility).
(d) The level of utility for a given a is different, and hence the required minimal expenditure
level is smaller in (b) than in (a). Expenditure function (obtained from Hicksian demands)
in (a) is ea ( p1 , p2 , ū) = ū((1 − a) a−1 · p11− a · [ p2 /a] a ) = and in (b) eb ( p1 , p2 , Ū ) = [Ū ]1/4 ((1 −
a) a−1 · p11− a · [ p2 /a] a ). Example: if we fix the utility level at ū = 16 in (a), the corresponding
level in (b) would be (ū)1/4 = 2, requiring much lower values for x1 and x2 .
2. (a) homogeneity
1
φ(λz1 , λz2 ) = λz1 + (λz1 · λz2 )α + λz2 = λ(z1 + z2 ) + λ2α [1/α · (z1 z2 )α ]
α
If α = 0.5, then linear homogeneous. In other cases, it is not homogeneous. It is not
homothetic since we cannot write it as a function of a homogeneous function alone (even
though part of the function is homogeneous). Also good: analyze the MRTS.
(b) The question boils down to establishing whether
 
 < 
λ(z1 + z2 ) + λ[1/α · (z1 z2 )α ] = λ(z1 + z2 ) + λ2α [1/α · (z1 z2 )α ]
 
>
Removing λ(z1 + z2 ) on both sides, we are back in the familiar Cobb Douglas case, and
RTS for α = 0.5 are constant CRTS (case of linear homogeneity) and for α < .5 DRTS and
for α > .5 IRTS.
(c)
∂φ
= 1 + (z1 · z2 )α−1 z2 = 1 + z1α−1 · z2α
∂z1
For α = .5 this is homogeneous of degree zero since then 1 + (z2 /z1 ).5 , else it is not homo-
geneous, but homothetic.

12
€2,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
jipclaassens
5,0
(1)

Ook beschikbaar in voordeelbundel

Thumbnail
Voordeelbundel
Micro economics exams with answers
-
3 8 2016
€ 23,92 Meer info

Maak kennis met de verkoper

Seller avatar
jipclaassens Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
5
Lid sinds
9 jaar
Aantal volgers
4
Documenten
20
Laatst verkocht
5 jaar geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen