100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Samenvatting 'Maths in Motion' , Wiskunde voor Bewegingswetenschappen

Beoordeling
-
Verkocht
3
Pagina's
51
Geüpload op
09-01-2023
Geschreven in
2022/2023

Een uitgebreide samenvatting met voorbeelden van het boek Maths in Motion van Theo de Haan, 3e editie. Alle hoofdstukken met voorbeelden uitgelegd. Aan het einde van elk hoofdstuk handige opgaves uit boek, zodat je niet alles hoeft te maken, maar wel alles snapt.

Meer zien Lees minder












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
9 januari 2023
Bestand laatst geupdate op
9 januari 2023
Aantal pagina's
51
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Samenvatting BW Wiskunde
Hendrik Jan, van der Kolk

December 2022




Tip:
-Aantal handige opgaves is best veel, dus als je ze niet allemaal kan maken, kijk wel ff de
antwoorden door. Klein tipje

1

,Contents
1 Differentiation 4
1.1 Basic Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Kettingregel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Partial Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Handige Opgaves: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Integration 7
2.1 Basic Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Integration by substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Integration in Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Multiple Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Handige opgaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Differential Equations 15
3.1 Kenmerken Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Solving Diffential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Case 1: Order 1 - Linear - Homogenous . . . . . . . . . . . . . . . . . . . 16
3.2.2 Case 2: Order 1 - Linear - Inhomogenous . . . . . . . . . . . . . . . . . . 16
3.2.3 Case 3: Order 2 - Linear - Homogenous . . . . . . . . . . . . . . . . . . . 19
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Handige opgaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Coordinates 23
4.1 2D-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 3D-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Omzettingsformules in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 Spherical coordinates: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4.1 Polar coordinates: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4.2 Cylindrical Coordinates: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.3 Spherical Coordinates: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Handige Opgaves: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Vectors 30
5.1 Algemene dingetjes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Basic Manipulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Vector Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.1 Diffentieren: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.2 Integreren: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Dot product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Cross product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34


2

, 5.6 Vector Equation of a Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.7 Handige Opgaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Matrices 37
6.1 Equating two matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 Multiplying by a number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 Adding and Subtracting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.4 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.5 The Inverse Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.5.1 2x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.5.2 3x3 en hoger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.6 The Transpose Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.7 Axes Transformations and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.7.1 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.7.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.7.3 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.7.4 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.8 Multiple Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.9 Object Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.10 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.10.1 2x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.10.2 3x3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.10.3 4x4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.10.4 3 Handige tips: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.11 Handige Opgaves: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51




3

,1 Differentiation
1.1 Basic Rules
Differentieren wordt gebruikt om de helling van een functie te bepalen

Differentieren regels:
Sum Rule: f (x) = p(x) ± g(x) → f ′ (x) = p′ (x) ± g ′ (x)
Product rule: f (x) = p(x) ∗ g(x) → f ′ (x) = p′ (x) ∗ g(x) + p(x) ∗ g ′ (x)
p(x) ′ ′ (x)
Quotient Rule: f (x) = g(x) → f ′ (x) = p (x)∗g(x)−p(x)∗g
(g(x))2

For example:
f (x) = 6x + x2 → f ′ (x) = 6 + 2x
f (x) = ex ∗ x2 → f ′ (x) = ex ∗ x2 + ex ∗ 2x
2
f (x) = 2x+1
x2 −1
→ f ′ (x) = 2∗(x −1)−2x(2x+1)
(x2 −1)2
= 2x2 −2−4x2 −2x
(x2 −1)2
= −2x2 −2x−2
(x2 −1)2

Standaard dingen om te weten:
f (x) = xn → f ′ (x) = nxn−1
f (x) = ex → f ′ (x) = ex
f (x) = loga x → f ′ (x) = x ln
1
a
f (x) = ln(x) → f ′ (x) = x1

f (x) = sin x → f ′ (x) = cos x
f (x) = cos x → f ′ (x) = − sin x
f (x) = tan x → f ′ (x) = cos12 x


1.2 Kettingregel
Stel je hebt k(x) = cos(2x), dan heb je de functie f (x) = 2x zitten in de cosinus. Dan kan je
niet meer de standaard afgeleide pakken van de cosinus. Dus moet je de kettingregel gebruiken.

Kettingregel:
k(x) = g(f (x)) → k ′ (x) = g ′ (f (x)) ∗ f ′ (x)



Dit is misschien een beetje een vage definitie, maar het wordt duidelijker met het voorbeeld:

k(x) = cos(2x)



Je ziet de 2 functies: cosinus en 2x. Even beide een naam geven:
g = cos(u) ; u = 2x

Eigenlijk heb je k(x) nu alleen anders geschreven, kijk maar: k(x) = g(u) = cos(u) = cos(2x)
En nu de afgeleide pakken van beide functies



4

, g ′ = −sin(u) ; u′ = 2

De afgeleide van k is dan volgens de kettingregel: k ′ (x) = g ′ ∗ u′ = −sin(u) ∗ 2 Er staat nu
sin(u), maar we weten wat u is, dus uiteindelijk krijg je:
k ′ (x) = −sin(2x) ∗ 2 = −2sin(2x)


Ander voorbeeld: p
k(x) = 3x2 + 2x − 1
√ 1 1
g = u = u 2 → g ′ = 12 u− 2
u = 3x2 + 2x − 1 → u′ = 6x + 2
1 1
Dus k ′ (x) = g ′ ∗ u′ = 12 u− 2 ∗ (6x + 2) = 12 (3x2 + 2x − 1)− 2 ∗ (6x + 2) = √ 6x+2
2 3x2 +2x−1

Je boek noteert het iets anders (Zie pagina 46), maar ik vind persoonlijk mijn manier sneller
en duidelijker. Maar je moet doen, wat jij het makkelijkst vindt

The second derivative, is niets meer dan de tweede afgeleide, dus de afgeleide functie nog een
keer afleiden. Voor de rest niets speciaals.


1.3 Partial Differentiation
Partial differentiation wordt gebruik, wanneer je functie depends on meer dan 1 variabele. Tot
nu depende de functie f alleen op de variabele x. Neem bijvoorbeeld z = f (x, y) dan heb je een
drie dimensionale grafiek, als je hem zou plotten. Zie figuur hieronder




Dan kan je de afgeleide in 2 richtingen bepalen. In de x-richting (linker plaatje) of in de y-
richting (rechter plaatje). Je ziet, dat als je de afgeleide in de x-richting bepaalt, dat y constant


5
€6,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
hjkolkvander

Maak kennis met de verkoper

Seller avatar
hjkolkvander Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
3
Lid sinds
3 jaar
Aantal volgers
1
Documenten
1
Laatst verkocht
1 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen