100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

All notes for 207 pharmacology

Beoordeling
-
Verkocht
1
Pagina's
83
Geüpload op
05-01-2023
Geschreven in
2022/2023

notes from every lecture from september to december of 207 pharmacology condensed and simplified from the lecture slides

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Onbekend
Vak

Documentinformatie

Geüpload op
5 januari 2023
Aantal pagina's
83
Geschreven in
2022/2023
Type
College aantekeningen
Docent(en)
Professor chris golding
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Agonist/receptor theories

Categorising drug action in terms of receptors is a central theme of pharmacology; the study of the
interactions between drugs and receptors at a molecular or biochemical level is known as
pharmacodynamics

1905 - Langley introduced the idea of ‘receptive substance’ – the part of a cell with which hormones
and transmitters interact



Lock and key hypothesis

1926 – Clark proposed that there is a reversible monomolecular reaction between acetylcholine and
its receptive substance; the receptive substance (receptor) only accounts for a small part of the cell

Receptor occupancy is related to drug concentration; response is related to drug concentration;
response is related to receptor occupancy; agonist + receptor = agonist-receptor complex/response



A + R -> AR

At equilibrium: from basic kinetic theory; agonist-receptor complex
concentration is proportional to [A] and [R]

The rate at which the AR complexes dissociate is proportional to the concentration of AR; in 3, the
constant is the dissociation constant, KA

KA = dissociation (equilibrium) constant for agonist A; Kaff = affinity constant for agonist A

Referring to the equation KA= [A][R]/ [AR]; high affinity=low KA and low affinity= high KA



Determining relationship of receptor occupancy (y) to [A], KA at equilibrium




If y = proportion of receptors occupied (where 1
= all possible receptors bound i.e., maximum
binding), binding as fraction of maximum binding

When y = 0.5 then KA = [A]



In a drug binding curve

When we express the concentration of agonist against occupancy, i.e., the
fraction of receptors that are bound (y), at y = 0.5, we can determine the KA

Relate the binding (occupancy/y) to the
response (EA/EM); response = binding

,y = proportion of receptors occupied by A

KA = dissociation constant for agonist A

[A] = concentration of A



Partial agonists

Drugs that bind receptors but inefficiently, therefore incapable of
giving maximal response (thus acts as an antagonist)

Ariens theory – response = α y; α = intrinsic activity; therefore,
response is equal to the intrinsic activity of a drug multiplied by y

At half maximal occupancy, a partial agonist yields a smaller response
because it has a smaller intrinsic activity



Model for efficacy

Many full agonists could elicit maximal responses at very low
occupancies – concept of receptor reserve; response does not
relate directly to receptor occupancy (can be expressed in
terms of efficacy – describes the strength of a single drug
receptor complex in evoking a response)

, Competitive antagonism

Agonist potency, pD2

Expressed like the pH system



Agonist + agonist synergy

Convergent signalling – different receptors; effect is
more than adding effects of 1 and 2




Additive effect

Common receptor




Full agonist + partial agonist – partial antagonism

Partial agonist A2 cannot reach maximal effect




Competitive antagonism

A + R -> AR – response; B + R -> BR – no response

Competitive antagonists can be quantitively understood by the amount of extra agonist we need to in
the presence of the antagonist, to restore the response (normally 50% of the maximal response);
calculate the dose ratio

, How to plot the slope of a graph where the intercept = 0

Straight line indicates parallelism – increasing
concentrations of B causes parallel shifts to the
right of the dose response

In log terms –

<- graph where y=mx

In a graph where the y intercept is not 0 –> y = mx + b




Antagonist occupancy (z)

Agonist occupancy = y



When DR = 10 then z = 0.9

Therefore when 1/10 of receptors are free, require 10x more A
€9,34
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
JessTheMess

Maak kennis met de verkoper

Seller avatar
JessTheMess The University of Liverpool
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
2
Lid sinds
3 jaar
Aantal volgers
2
Documenten
3
Laatst verkocht
2 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen