,Bewijs Theorem 1.1
Te bewijzen: u + v = v + u
Bewijs:
Let u = [u1, u2, …, un] and v = [v1, v2, …, vn]
u + v = [u1, u2, …, un] + [v1, v2, …, vn]
= [u1 + v1, u2 + v2, …, un + vn]
= [v1 + u1, v2 + u2, …, vn + un]
= [v1, v2, …, vn] + [u1, u2, …, un]
=v+u
Te bewijzen: (u + v) + w = u + (v + w)
Bewijs:
Let u = [u1, u2, …, un] and v = [v1, v2, …, vn] and w = [w1, w2, …, wn]
(u + v) + w = ([u1, u2, …, un] + [v1, v2, …, vn]) + [w1, w2, …, wn]
= ([u1 + v1, u2 + v2, …, un + vn]) + [w1, w2, …, wn]
= [(u1 + v1) + w1, (u2 + v2) + w2, …, (un + vn) + wn]
= [u1 + (v1 + w1), u2 + (v2 + w2), …, un + (vn + wn)]
= [u1, u2, …, un] + ([v1, v2, …, vn] + [w1, w2, …, wn])
= u + (v + w)
Bewijs Theorem 1.2
Te bewijzen: u ∙ v=v ∙ u
Bewijs:
Let u = [u1, u2, …, un] and v = [v1, v2, …, vn]
u ∙ v = u1v1 + u2v2 + …. + unvn
= v1u1 + v2u2 + …. + vnun
=v ∙ u
Te bewijzen: (cu) ∙ v = c(u ∙ v)
Bewijs:
Let u = [u1, u2, …, un] and v = [v1, v2, …, vn] and let c be a scalar.
(cu) ∙ v = [cu1 + cu2 + … + cun] ∙ [v1, v2, …, vn]
= cu1v1 + cu2v2 + …. + cunvn
= c(u1v1 + u2v2 + …. + unvn)
= c(u ∙ v)
Bewijs Theorem 1.3
Te bewijzen: ‖c v‖ = |c|‖v‖
Bewijs:
‖cv‖2 = (cv) ∙ (cv) = c2(v ∙ v) = c2 ‖v‖ 2
√‖c v‖2
= ‖c v‖
√ c ‖v‖
2 2
= |c|‖v‖ for any real number c
,
, Bewijs Theorem 1.5
Te bewijzen: ‖u+ v‖ ≤ ‖u‖ + ‖v‖
Bewijs:
2
‖u+ v‖ = (u + v) ∙ (u + v)
=u ∙ u + 2(u ∙ v) + v ∙ v
= ‖u‖2 + 2|u ∙ v| + ‖v‖2
2
≤ ‖u‖ +2 ‖u‖‖v‖ + ‖v‖2 |u ∙ v| ≤
‖u‖‖v‖ (Causy Schwarz)
2 2
≤ ( ‖u‖ + ‖v‖ )
2 2 2
Thus, ‖u+ v‖ ≤ ( ‖u‖ + ‖v‖ ) ⟺‖u+ v‖ ≤ ‖u‖ + ‖v‖
Bewijs Theorem 1.5 (Pytagoras’ Theorem)
Te bewijzen: ‖u+ v‖2 = ‖u‖2 + ‖v‖2 if and only if u and v are orthogonal: u
∙ v=0
Bewijs:
‖u+ v‖2 = ‖u‖2 + 2(u ∙ v) + ‖v‖2 for all u + v in Rn if and
only if u ∙ v=0
2 2
= ‖u‖ + ‖v‖
Bewijs opgave 52 (1.2)
Te bewijzen: ‖u+ v‖ = ‖u‖ – ‖v‖ if and only if u and v are in opposite
direction.
Bewijs:
‖u+ v‖ 2
=( ‖u‖ – ‖v‖ )2
2
(u + v) ∙ (u + v) = ‖u‖ –2 ‖u‖‖v‖ + ‖v‖2
‖u‖2 + 2(u ∙ v) + ‖v‖2 = ‖u‖2 – 2 ‖u‖‖v‖ + ‖v‖2
2(u ∙ v) = – 2 ‖u‖‖v‖
u ∙ v=– ‖u‖‖v‖
u∙ v
Thus, u ∙ v=– ‖u‖‖v‖ ⟺ = –1. Cos α is gelijk aan –1
‖u‖‖v‖
en dat betekent dat α gelijk is aan 180° en de vectoren u en v dus
tegenovergesteld gericht moeten zijn.