100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Web Data Processing Systems (X_400418), Master Vu Business Analytics/AI/Computer Science/Econometrie

Beoordeling
4,0
(3)
Verkocht
7
Pagina's
22
Geüpload op
14-12-2022
Geschreven in
2022/2023

Een samenvatting van alle lectures (1 t/m 12) van het vak Web Data Processing Systems aan de VU Amsterdam. Kort, duidelijk en overzichtelijk samengevat met ondersteundende afbeeldingen waar nodig.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
14 december 2022
Aantal pagina's
22
Geschreven in
2022/2023
Type
Samenvatting

Voorbeeld van de inhoud

Knowledge bases
First Information Retrieval was based on keywords. Now it is based on entities.

Symbolic Knowledge Bases (KBs)

● Meaning accessible to humans
● Constructed manually or from unstructured sources
● Can be expressed using first-order logic (knowledge graphs):




Latent Models

● Meaning is hidden
● Learned using machine learning techniques
● Prominent example: Google’s word2vec

RDF (Resource Description Framework)

● Standard used to report statements that describe properties of resources
● Statements can be represented as triplets of the form <s p o> (subject predicate object) and
serialized with different formats (RDF/XML, N3, Turtle)
● RDF dataset can be represented as a directed graph
● SPARQL is used to query RDF databases (inspired by SQL)
○ Finding answers to a query corresponds to finding all possible graph homomorphisms
between the query and the graph


Knowledge bases on the web
WordNet

● Groups words into sets of synonyms called synets.
● Words can be monosemous (one meaning) or polysemous (multiple meanings)
● Each synet has a gloss (short description) and is connected to other synets using relations. Most
important:
○ Hypernyms/Hyponums (isA)
○ Meronym/Holonyms (partOf)

DBpedia

● Project to convert Wikipedia pages to RDF
● Uses structured data on the pages
● Contains links to other KBs (widely popular in the “linked-data-cloud”
● Fairly large ontology but not rich in terms of expressiveness
● Alignment between infoboxes and ontologies is done via community-provided mappings

Yago (Yet another great ontology)

● Goals:
○ Unify Wikipedia and Wordnet

, ○ Extract clean facts
○ Check plausibility of facts via type checking
● High standard in terms of quality

Freebase

● Collaborative knowledge base by its community
● Acquired by Google, but shutdown in 2014

Wikidata

● Mainly text → hard to verify and keep consistency
● “Data version” of Wikipedia
○ Validated by community
○ Keeps provenance of the data
○ Multilingual
○ Supports plurality
● High quality knowledge


Natural Language Processing (NLP)
Knowledge acquisition: process to extract knowledge (to be integrated
into knowledge bases) from unstructured text or other data




Preprocessing
Tokenization

Split sequence into tokens (terms/words)
● Token: instance of a sequence of characters in some particular document that are grouped
together as a useful semantic unit
● Type: class of all tokens containing the same character sequence
● Example: “A rose is a rose is a rose”
○ Tokens: 8
○ Types: 3 ({a, is, rose})
Queries and documents have to be preprocessed identically. It determines which queries match.
Problems:
● Hyphens (Co-education, drag-and-drop)
● Names (San Francisco, Los Angeles)
● Language (compound nouns in German v.s. separate nouns in English)

Lemmatization

Goal: reduce words to base form (Lemma; as defined in dictionary)

, ● Am, are, be, is → be
● Car, cars, car’s, cars’ → car
Stemming

Goal: reduce words to their “roots”
● Are → ar
● Automate, automates, automatic, automation → automat

Stop word removal

Based on a stop list, remove all stop words. All words that are not part of the IR system’s dictionary.
● Saves memory
● Makes query processing faster

Part-of-speech (POS)

Assign a label to each token that indicates what the function is in the context.
● Function words: used to make sentences grammatically correct
○ Prepositions, conjunctions, pronouns, etc.
● Content words: used to carry the meaning of a sentence
○ Nouns, verbs, adjectives, adverbs
Part-of-speech tags allow for a higher degree of abstraction to estimate likelihoods.
How do they work?
● Rule-based taggers
● Stochastic taggers. Most used and rely on Hidden Markov Models. Based on likelihood.


Other NLP tasks
Parsing

Construct a tree that represents the syntactic structure of the string according to some grammars.




Constituency parsing

Breaks the phrase into sub-phrases. Nonterminals in the tree are types of phrases, the terminals are the
words in the sentence, and the edges are unlabeled.

Dependency parsing

Connect the words according to their relationships. Each vertex in the tree represents a word, child
nodes are words that are dependent on the parent, and edges are labeled
by the relationship.


Information Extraction
Two types of information extraction: Named Entity Recognition (NER) and Relation Extraction (RE).
€5,98
Krijg toegang tot het volledige document:
Gekocht door 7 studenten

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Beoordelingen van geverifieerde kopers

Alle 3 reviews worden weergegeven
1 jaar geleden

1 jaar geleden

2 jaar geleden

4,0

3 beoordelingen

5
1
4
1
3
1
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
thomezechiels Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
7
Lid sinds
2 jaar
Aantal volgers
3
Documenten
1
Laatst verkocht
9 maanden geleden

4,0

3 beoordelingen

5
1
4
1
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen