100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Summaries of all lecture notes in APM346, you will be good to go if you are able to understand everything shown in the notes

Beoordeling
-
Verkocht
-
Pagina's
7
Geüpload op
12-12-2022
Geschreven in
2019/2020

Summaries of all lecture notes in APM346, you will be good to go if you are able to understand everything shown in the notes

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
12 december 2022
Aantal pagina's
7
Geschreven in
2019/2020
Type
College aantekeningen
Docent(en)
Justin ko
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

June 4, 2020 APM346 – Week 6 Justin Ko


1 Properties of the Heat Equation on R
Recall that the solution to (
ut − kuxx = f (x, t) x ∈ R, t > 0,
(1)
u|t=0 = g(x) x ∈ R.
is given by
Z ∞ Z tZ ∞ (x−y)2
1 (x−y)2 1
u(x, t) = √ e− 4kt g(y) dy + p e− 4k(t−s) f (y, s) dyds. (2)
4πkt −∞ 0 −∞ 4πk(t − s)

We can use this formula to derive several nice properties satisfied by the solutions to (2).

1.1 Well-Posed
Given some minor integrability assumptions on g (bounded and continuous), we can prove the existence
of a C ∞ (R) solution to (1) is obvious from (2). We can show the solutions are also unique and stable.
Proposition 1 (Uniqueness of Solutions that Decay at Infinity )
If u and its derivatives decay at infinity, then (1) has a unique solution.


Proof. We use an energy argument.

Difference of Solutions: Suppose u1 and u2 are C 2 (R) solutions to (1) that decay at infinity. By
linearity, v = u1 − u2 solves (
ut − kuxx = 0 x ∈ R, t > 0,
(3)
u|t=0 = 0 x ∈ R.
To prove uniqueness, it suffices to show that v ≡ 0 on the domain of the solution.

Show the Energy is Zero: We consider the energy of the solution v to (3),

1 ∞ 2
Z
E(t) = v dx.
2 −∞

By the assumptions on the decay of u, we can differentiate under the integral sign with respect to t to
conclude that
Z ∞
E 0 (t) = vt v dx
−∞
Z ∞
=k vxx v dx vt − kvxx = 0
−∞
Z ∞ x=∞
= −k vx2 dx + (vx v) Integrate by Parts
−∞ x=−∞
Z ∞
= −k vx2 dx lim u = 0
−∞ x→±∞

≤ 0.

Since E 0 (t) ≤ 0, we can conclude that E(t) is decreasing by the mean value theorem. Furthermore,
the initial conditions imply
1 ∞
Z
E(0) = v(x, 0)2 dx = 0
2 −∞


Page 1 of 7

, June 4, 2020 APM346 – Week 6 Justin Ko


because v(x, 0) = 0. This implies that E(t) ≤ 0. Combined with the fact E(t) ≥ 0 since it is the
integral of non-negative functions, this implies
0 ≤ E(t) ≤ 0 =⇒ E(t) = 0 for all t.
Show the Difference is Zero: Since E(t) is the integral of a sum of squares of continuous functions,
each term in the integrand must be 0 so
v 2 (x, t) = 0 for all x ∈ R and t ≥ 0 =⇒ v(x, t) ≡ 0.
Therefore, u1 = u2 , so the solution to (3) is unique.
Remark 1. We can also prove uniqueness for the homogeneous heat equation using by applying the
maximum principle covered in the next section and taking limits. We need to assume some integrability
on g to ensure that this limiting procedure is valid.
Proposition 2 (Stability of Homogeneous Solutions that Decay at Infinity )
If f = 0 and u and its derivatives decay at infinity, then (1) is stable.

Proof. Let u1 be the solution to the homogeneous version of (1) with initial data g1 and u2 be the
solution to the homogeneous version of (1) with and initial data g2 . We consider the energy of the
solution v to (3),
1 ∞ 2
Z
E(t) = v dx.
2 −∞
The computations in the proof of uniqueness imply that E 0 (t) ≤ 0, so E(t) is decreasing. Furthermore,
we have
1 ∞ 1 ∞
Z Z
E(0) = v(x, 0)2 dx = (g1 (x) − g2 (x))2 dx = 0
2 −∞ 2 −∞
because v1 (x, 0) = g1 (x) and v2 (x, 0) = g2 (x). We define the L2 norm of f as
Z ∞ 
2
kf k2 = f (x) dx .
−∞
1
√ ≤ E(0) =
Therefore, E(t) 2 kg1 − g2 k22 by the mean value theorem. For every  > 0, if we take
kg1 − g2 k ≤ , then Z ∞
1
E(t) = (u1 − u2 )2 dx ≤ .
2 −∞
for all t. This implies stability for all t in terms of the “square error”.
2
Remark 2. The heat equation is not well-posed for t < 0. For example, take un = 1
n sin(nx)e−n kt
.

1.2 Symmetry
It is easy to check (2) implies that the solution u(x, t) inherits the symmetry properties of the initial
conditions and inhomogeneous term,
Proposition 3 (Symmetry )
Let u(x, t) be the solution to (1).
(i) If f and g are even in x then u(x, t) is even in x.
(ii) If f and g are odd in x then u(x, t) is odd in x.

This means we can use odd or even reflections to solve the heat equation on the half line, in exactly
the same way as for the half line wave equation.


Page 2 of 7
€7,01
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
9kfhgia89h1

Maak kennis met de verkoper

Seller avatar
9kfhgia89h1 Various
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
3 jaar
Aantal volgers
1
Documenten
12
Laatst verkocht
3 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen