100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Summaries of all lecture notes in APM346, you will be good to go if you are able to understand everything shown in the notes

Beoordeling
-
Verkocht
-
Pagina's
7
Geüpload op
12-12-2022
Geschreven in
2019/2020

Summaries of all lecture notes in APM346, you will be good to go if you are able to understand everything shown in the notes

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
12 december 2022
Aantal pagina's
7
Geschreven in
2019/2020
Type
College aantekeningen
Docent(en)
Justin ko
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

July 17, 2020 APM346 – Week 10 Justin Ko


1 Laplace’s Equation on Circular Domains
Laplace’s equation on rotationally symmetric domains can be solved using a change of variables to
polar coordinates. The two dimensional Laplace operator in its Cartesian and polar forms are
1 1
∆u(x, y) = uxx + uyy and ∆u(r, θ) = urr + ur + 2 uθθ .
r r
We are interested in finding bounded solutions to Laplace’s equation, so we often have that implicit
assumption. The “radial” problem will be an Euler ODE which has the following solution.

Euler Equations: An ODE of the form

ax2 y 00 + bxy 0 + cy = 0

are called Euler ODEs. The ODE is solved by finding the roots r1 and r2 of the characteristic
polynomial
C(x) = ax(x − 1) + bx + c = 0
and the general form of the solution is given by

r1 r2
C1 x + C2 x
 r1 , r2 ∈ R, r1 6= r2
y(x) = C1 xr + C2 log(x)xr r1 = r2 = r ∈ R
 α α
C1 x cos(β log x) + C2 x sin(β log x) r1 = α + iβ, r2 = α − iβ, β 6= 0



1.1 Example Problems
Problem 1.1. (?) (Interior of a Disk) Solve
(
∆u = 0 for r < a, − π ≤ θ ≤ π,
u|r=a = 1 + 2 sin(θ),

Solution 1.1. After converting to polar coordinates, our PDE can be written as the following problem
on the circle 
1 1
urr + r ur + r2 uθθ = 0 0 < r < a, −π ≤ θ ≤ π


u(r, −π) = u(r, π) 0<r<a



uθ (r, −π) = uθ (r, π) 0<r<a

u(a, θ) = 1 + 2 sin(θ) −π ≤ θ ≤ π





r→0 u(r, θ) < ∞ −π ≤ θ ≤ π
lim

The condition that limr→0 u(r, θ) < ∞ is an implicit assumption of this problem.

Step 1 — Separation of Variables: The PDE has periodic homogeneous angular boundary conditions,
so we look for a solution of the form u(r, θ) = R(r)Θ(θ). For such a solution, the PDE implies

1 1 r2 R00 + rR0 Θ00
∆u = R00 Θ + R0 Θ + 2 RΘ00 = 0 =⇒ − = = −λ.
r r R Θ
This results in the ODEs

r2 R00 (r) + rR(r) − λR0 (r) = 0 and Θ00 (θ) + λΘ(θ) = 0

with angular boundary conditions

R(r)Θ(−π) = R(r)Θ(π) = 0, R(r)Θ0 (−π) = R(r)Θ0 (π) = 0


Page 1 of 7

, July 17, 2020 APM346 – Week 10 Justin Ko


and radial boundary conditions

R(a)Θ(θ) = 1 + 2 sin(θ) lim R(r)Θ(θ) < ∞.
r→0

For non-trivial solutions to the angle problem, we require R(r) 6≡ 0, Θ(−π) = Θ(π), Θ0 (−π) = Θ0 (π).

Step 2 — Eigenvalue Problem: We now solve the periodic angular eigenvalue problem
(
Θ00 + λΘ = 0
Θ(π) − Θ(−π) = Θ0 (π) − Θ0 (−π) = 0.

The eigenvalues and corresponding eigenfunctions are given by the full Fourier series

λ0 = 0, Θ0 (x) = 1, λn = n2 , Θn (x) = cos(nx), Φn (x) = sin(nx), n = 1, 2, . . . .

Step 3 — Radial Problem: We now solve the radial problem for each eigenvalue. The ODE

r2 R00 + rR0 − λR = 0

is an Euler ODE with solutions

R0 (r) = C0 log r + D0 , Rn (r) = Cn r−n + Dn rn , n = 1, 2, . . .

Since the solution should be regular at 0 (limr→0 R(r) < ∞), we need Cn = 0 for all n ≥ 0, so our
solution is of the form

R0 (r) = D0 , Rn (r) = Dn rn , n = 1, 2, . . .

for some arbitrary coefficients D0 and Dn .

Step 4 — General Solution: Using the principle of superposition, and summing all the eigenfunc-
tions gives us the general solution

X
u(r, θ) = A0 + rn (An cos(nθ) + Bn sin(nθ))
n=1

where A0 , An and Bn are yet to be determined coefficients.

Step 5 — Particular Solution: To find constants A0 , An and Bn we need to use the boundary condition.
Using the boundary condition we get

X
1 + 2 sin(θ) = u(a, θ) = A0 + an (An cos(nθ) + Bn sin(nθ)) .
n=1

Instead of solving for the Fourier series like usual, we can just equate coefficients to see that
2
A0 = 1, a1 A1 = 2 =⇒ A1 = ,
a
and the rest of the coefficients are 0.

Step 6 — Final Answer: To summarize, the solution to the PDE is given by
2
u(r, θ) = 1 + r sin(θ).
a


Page 2 of 7
€7,01
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
9kfhgia89h1

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
9kfhgia89h1 Various
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
3 jaar
Aantal volgers
1
Documenten
12
Laatst verkocht
3 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen