100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Natural Language Generation Course Notes

Beoordeling
-
Verkocht
-
Pagina's
22
Geüpload op
22-11-2022
Geschreven in
2022/2023

This document contains notes and summaries covering the content of the course Natural Language Generation within the Artificial Intelligence Master at Utrecht University.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
22 november 2022
Aantal pagina's
22
Geschreven in
2022/2023
Type
Samenvatting

Voorbeeld van de inhoud

Natural Language Generation course notes, March 2022

Lecture 1: Introduction

What’s NLG
• NLG systems are computer algorithms/systems which produce texts in
English or other human languages
• Input is data (raw or analyzed)
⁃ often text, NLG usually does not include MT
• Output is text:
⁃ sentences, reports, explanations, etc.
• Two aims:
⁃ Understanding language production (Theoretical NLG)
⁃ Building practically useful systems (Practical NLG)

Language technology
• From data to meaning: speech —> speech recognition —> NLU —> meaning
• From meaning to data: meaning —> NLG —> text —> speech synthesis —>
speech

Ex. 1: Weather forecast
• Input: numerical weather predictions
⁃ From supercomputer running a numerical weather simulation
• Output: textual weather forecast
⁃ Users often prefer some NLG texts over human texts
⁃ More consistent, better word choice

Ex. 2: Road maintenance
• Forecasts for gritting and other winter road maintenance procedures
• Input is 15 parameters over space and time
⁃ Temperature, wind speed, rain, etc
⁃ Over thousands of points on a grid
⁃ Over 24 hours (20-min interval)
• Generated text for each of these
• Issues:
⁃ Weather terms can be context dependent
⁃ Light rain in Ireland vs light rain in the Sahara
⁃ Aggregating over a huge set of locations
⁃ Being brief yet truthful and informative
⁃ The risk of false negatives

Ex. 3: BabyTalk
• Goal: summarize clinical data about premature babies in neonatal ICU
• Input: sensor data (blood pressure, heart rate); records of actions/
observations by medical staff
• Output: multi-paramedic texts, summarise
⁃ BT45: 45 mins data, for doctors
⁃ BT-Nurse: 12 hrs data, for nurses
⁃ BT-Family: 24 hrs data, for parents

, • Issues here:
⁃ How to decide on evaluative terms like “stable”
⁃ How to avoid omitting clinically relevant info
⁃ How to generate a coherent narrative
⁃ How be be clear about the time line

Ex. 4: ScubaText system
• Demo system for scuba divers
• Input is dive computer data
⁃ Depth-time profile of scuba dive
• Output is feedback to diver
⁃ Mistakes, what to do better next time
⁃ Encouragement of things done well

Other NLG apps
• Automatic journalism
• Reporting on sports results
• Textual feedback on health
• Agents and dialogue systems
• Financial reporting for companies
• Image labelling

NLG systems’ pipeline
• Data analytics and interpretation:
⁃ Making sense of the data
• Document planning:
⁃ Decide on content and structure of text
⁃ Content selection:
⁃ Of all the things I could inform you about, which should be
chosen?
⁃ Depends on what is important, what is easy to say, what makes
good narrative
⁃ Document structure:
⁃ How should I organize this content as a text?
⁃ What order do I say things in?
⁃ What rethorical structure?
• Microplanning:
⁃ Decide how to linguistically express text (which words, sentences, etc.
to use; how to identify objects, actions, times)
⁃ Lexical/syntactic choice:
⁃ Which words and linguistic structures to use?
⁃ Aggregation:
⁃ How should information be distributed across sentences and
paragraphs?
⁃ Reference:
⁃ How should the text refer to objects and entities?
• Linguistic Realization:
⁃ Grammatical details:
⁃ Form “legal” English sentences based on decisions made in

, previous stages
⁃ Obey sublanguage & genre constraints
⁃ Structure:
⁃ Inserting line breaks
⁃ Form legal HTML, RTF, or whatever output format is desired
⁃ Simple linguistic processing:
⁃ Capitalize first word of sentence
⁃ Subject-verb agreement

Multimodal NLG
• Sometimes output is speech (i.e. spoken)
• Text may be combined with visualizations
⁃ Produce separately, or
⁃ Tight integration
⁃ Text refers to graphic, or graphs have text annotations
• Combined methods are often preferred

Building NLG systems
• Need knowledge of language and the application:
⁃ Where does it come from?
⁃ Imitate a corpus of human-written texts
⁃ Manually examine
⁃ Use learning if corpus is large enough
⁃ Ask domain experts
⁃ Experts bad at explaining what they do
⁃ Better at critiquing what system does
⁃ Experiments with users
⁃ Very nice in principle, but a lot of work
• Evaluation of output texts:
⁃ Does system help people?
⁃ Do people like the texts and delivery they are useful?
⁃ What when compare the output texts with human texts?

NLG vs. NLU
• NLG is about generating/producing rather than understanding language
⁃ Term “Natural Language Processing” (NLP) sometimes denotes NLU,
sometimes all of language technologies
• NLG and NLU are often combined:
⁃ Chatbots, machine translation and automated text summarization

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
massimilianogarzoni Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
18
Lid sinds
8 jaar
Aantal volgers
13
Documenten
17
Laatst verkocht
5 maanden geleden

2,7

3 beoordelingen

5
0
4
0
3
2
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen