100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Overig

Formelsammlung für Mathe 2

Beoordeling
-
Verkocht
-
Pagina's
9
Geüpload op
03-11-2022
Geschreven in
2022/2023

Die Formelsammlung beschränkt sich auf alle nötigen Themen in Mathe 2 aus dem zweiten Semester des Studiums Wirtschaftsingenieurwesen an der DHBW Stuttgart

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
3 november 2022
Aantal pagina's
9
Geschreven in
2022/2023
Type
Overig
Persoon
Onbekend

Onderwerpen

Voorbeeld van de inhoud

1. Folgen und Reihen Bsp. Teilbarkeit:

1.1 Geometrische Reihe erkennen
1
Bsp.: Durchmesser Kreis ändert sich immer um 4

1𝑛
𝑎𝑛 = 2𝑟 ∗ ∑𝑛𝑘=0
4
(vor Summe die sich ändernde Größe & Basis „q“ ist um wieviel sich Reihe ändert &
n od. n+1 od. n-1 testen, um auf Anfangswert der Reihe zu kommen)
_______________________________________________________________
1.2 Grenzwert geometrischer Reihen

1−𝑞𝑛+1
𝑎𝑛 = ∑𝑛𝑘=0 𝑞 𝑛 =
1−𝑞
1−𝑞 𝑛+1
➔ = 1−𝑞
(Bruch hochbringen & Teil mit n lim 𝑣. 𝐺𝑙𝑒𝑖𝑐ℎ𝑢𝑛𝑔 laufen lassen)
𝑛→∞ ________________________________________________________________
➔ 𝑊𝑒𝑛𝑛 𝑎𝑙𝑡𝑒𝑟𝑛𝑖𝑒𝑟𝑒𝑛𝑑, 𝑑𝑎𝑛𝑛 "-" vor 𝑞
1.4 Grenzwert nach l´Hospital
________________________________________________________________
1.3 Vollständige Induktion
Fall 𝑛∞ ; ∞0 ∶ 𝑒 ln (𝐹𝑜𝑟𝑚𝑒𝑙) Hochzahl mit * schreiben (13𝑥 → ln (1 ∗ 3𝑥)) & geg. Grenze
Bsp.: ; für alle 𝑛 ≥ 2 laufen
0
Fall 0 ∗ ∞: Produkt in Bruch umschreiben, damit entsteht
IA: kleinster erlaubter Wert für n einsetzen (hier 2); linke mit rechter Seite vergleichen 0
0 ∞ 𝑎𝑏𝑙𝑒𝑖𝑡𝑒𝑛
IV: A(n) = Gleichung inkl. Bedingungen abschreiben Fall ; : l´Hospital anwenden -> & kürzen
0 ∞ 𝑎𝑏𝑙𝑒𝑖𝑡𝑒𝑛
1 𝑛+2
IB: A(n+1) = ∗ (1 − (𝑛+1)2 ) = links erweitern, rechts n+1 (falls Fall 𝑛∞ voranging ist Grenze 𝑒 𝐺𝑟𝑒𝑛𝑧𝑒 )
2(𝑛+1)
Aus IV 𝑛+1 0 ∞
IS:
1
( ) ∗ (1 − (𝑛+1)2 ) Fall ∞ − ∞: durch Umschreiben od. Erweitern in 0; ∞ ändern und l´Hospital anwenden
2𝑛
𝑛+2 ________________________________________________________________
ausformulieren und umrechnen, sodass (hier ) raus kommt & mit beenden
2(𝑛+1) 1.5 Grenzwert bei √±√
√±√
1. Komplette Gleichung mit erweitern
√±√

2. Zähler um √-Zeichen kürzen
3. Nenner X ausklammern; ACHTUNG! 1 X raus ≙ : x²
4. Gegen Grenzwert laufen lassen


1|Seite

, 2. Differenzialrechnung _______________________________________________________________
2.3 Tangenten- & Normalengleichung
2.1 Ableitungsregeln

Kettenregel: 𝑢(𝑣) = 𝑢´(𝑣) ∗ 𝑣´(𝑥)
Produktregel: 𝑢 ∗ 𝑣 = 𝑢´ ∗ 𝑣 + 𝑢 ∗ 𝑣´
𝑢 𝑢´∗𝑣−𝑢∗𝑣´
Quotientenregel: =
𝑣 𝑣²

_______________________________________________________________
2.2 Wichtige Ableitungen & Integrale _______________________________________________________________
1
2.4 Vollständige Kurvendiskussion
f(x) = arcsin(𝑥) → 𝑓´(𝑥) =
√1 + 𝑥² 2.4.1 Stetig & Differenzierbar
1
f(x) = arccos(𝑥) → 𝑓´(𝑥) = − 1. Linke Seite = Rechte Seite mit x=2, dann ist stetig
√1 − 𝑥²
2. Abl. Linke Seite = Abl. Rechte Seite mit x=2, dann ist differenzierbar
1 3. Erste Unbekannte berechnen und mit (1.) zweite berechnen
f(x) = arctan(𝑥) → 𝑓´(𝑥) =
1 + 𝑥²
1 2.4.2 Symmetrie d. Schaubildes
f(x) = tanh(𝑥) → 𝑓´(𝑥) = = 1 − 𝑡𝑎𝑛ℎ²(𝑥)
𝑐𝑜𝑠ℎ²𝑥²
Schaubild einer Funktion ist symmetrisch, wenn alle Potenzen gerade od. ungerade sind.
𝑐𝑜𝑠ℎ 1
f(x) = coth(𝑥) = → 𝑓´(𝑥) = − = 1 − 𝑐𝑜𝑡ℎ²(𝑥)
𝑠𝑖𝑛ℎ 𝑠𝑖𝑛ℎ²𝑥²
2.4.3 Nullstellen, wenn Zählergrad > Nennergrad

1 • Gleich 0 setzen
F(x) = x ∗ ln(x) − x → f(x) = ln(𝑥) → 𝑓´(𝑥) = ∗1
𝑥 • Horner Schema zur Bestimmung von Nullstellen
f(x) = 𝑎 𝑥 → 𝑓´(𝑥) = 𝑎 𝑥 (ln(𝑎)) → 𝑓´´(𝑥) = 𝑎 𝑥 (ln(𝑎))²
𝑎
F(x) = 𝑒 𝑏𝑥+𝑐 → f(x) = 𝑎𝑒 𝑏𝑥+𝑐 → 𝑓´(𝑥) = 𝑎 ∗ 𝑏 ∗ 𝑒 𝑏𝑥+𝑐 Beim Raten mit 0 anfangen und dann immer ± Wert,
𝑏
der durch Konstante teilbar ist. (hier C=3 -> 0, ±1, ±3)
Ableitung Winkel-fkt.:
sin(x) – cos(x) – (-sin(x)) – (-cos(x)) – sin(x)…
sinh(x) – cosh(x) – sinh(x) …
𝑒 𝑥 −𝑒 −𝑥 𝑒 𝑥 +𝑒 −𝑥
sinh 𝑥 = cosh 𝑥 =
2 2
X = anderer Wert einsetzen -> Ergebnis unten rechts (hier 0) zeigt an, was passiert,
wenn man den Wert in die Gleichung einsetzt.

2|Seite
€8,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
Mistery0803

Maak kennis met de verkoper

Seller avatar
Mistery0803 Duale Hochschule Baden-Württemberg Stuttgart (Stuttgart)
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
5
Lid sinds
3 jaar
Aantal volgers
1
Documenten
5
Laatst verkocht
8 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen