100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Rijen en Reeksen (Voortgezette Analyse)

Beoordeling
-
Verkocht
2
Pagina's
26
Geüpload op
03-11-2022
Geschreven in
2022/2023

Deze samenvatting bevat alle stof van het onderdeel Rijen en Reeksen van het vak Voortgezette Analyse. De samenvatting is gebaseerd op een gedeelte van hoofdstuk 11 Calculus. Ook bevat het extra stof over de formele definitie.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
11.1 t/m 11.5, 11.10 en 11.11
Geüpload op
3 november 2022
Bestand laatst geupdate op
3 november 2022
Aantal pagina's
26
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

V O O R T G E Z E T T E A N A L YS E
RIJE N E N REE KSE N

, RIJEN EN REEKSEN

RIJEN

Een rij is een lijst getallen in een gedefinieerde volgorde.
Notatie: {𝑎1 , 𝑎2 , 𝑎3 , … } of {𝑎𝑛 } of {𝑎𝑛 } ∞
𝑛=1
De notatie lijkt op een verzameling, maar bij een rij staan de elementen (termen) op volgorde en
mogen ze vaker voorkomen. Wanneer er in de rij … achter staat, betekent dit dat deze naar oneindig
gaat. Elke term an heeft dus een opvolger an+1.


Voorbeeld: {1, 3, 5, 7, 9, … } = {2𝑘 − 1} 𝑘=1

Let er hierbij ook op dat we het hebben over n (of k in het voorbeeld). Hiermee bedoelen we de
natuurlijke getallen.

Een rij kan worden gedefinieerd als een functie, omdat er voor elke positief geheel getal n een an te
vinden is. Het domein is dan de verzameling natuurlijke getallen. We schrijven niet zo vaak f(n) om een
rij aan te duiden, maar an. De grafiek zal tenslotte bestaan uit losse punten, aangezien het domein
alleen bestaat uit de natuurlijke getallen.

Zoals ook al in het vorige voorbeeld te zien was kunnen sommige rijen gedefinieerd worden met een
formule voor de n-de term. We kunnen een rij dus op drie verschillende manieren noteren: de
officiële notatie voor een rij, de bijbehorende formule of door de termen van de rij uit te schrijven.
1 1 1 1 1 1
Voorbeeld: {𝑛 } ∞
𝑛=1
𝑎𝑛 = 𝑛 {1, 2 , 3 , 4 , 5 , … }

Soms kunnen we de formule ook zo omschrijven dat we de rij bij een andere waarde kunnen laten
beginnen en dat kan soms voordelig zijn.
∞ ∞
Voorbeeld: {1, 3, 5, 7, 9, … } = {2𝑘 − 1} 𝑘=1 = {2𝑘 + 1} 𝑘=0
1 1
{𝑛 } ∞
𝑛=1
= {𝑛+1} ∞
𝑛=0

1
Bij rijen zijn we geïnteresseerd of deze een limiet heeft of niet. Bij de rij {𝑛} ∞
𝑛=1
zien we dat de termen
steeds meer naar 0 neigen als n heel groot wordt (naar oneindig gaat). Dit noemen we de limiet. Als
een rij een limiet heeft, dan is deze convergent. We zeggen dan ook wel: de rij convergeert naar 0.
1
We noteren dit als lim = 0.
𝑛→∞ 𝑛


Definitie
In het algemeen noteren we dit als: lim 𝑎𝑛 = 𝐿 of 𝑎𝑛 → 𝐿 als 𝑛 → ∞ .
𝑛→∞
Dit betekent dat de termen van de rij naar L naderen als n heel groot wordt. Als de limiet bestaat, dan
zeggen we dat de rij convergeert. Anders stellen we dat de rij divergeert.
Onderstaande rijen zijn bijvoorbeeld beiden convergent.




2

,Stelling
Als lim 𝑓(𝑥) = 𝐿 en 𝑓(𝑛) = 𝑎𝑛 dan lim 𝑎𝑛 = 𝐿
𝑥→∞ 𝑛→∞
In woorden: als de functie een limiet heeft en de rij is te schrijven als deze functie (met dan wel als
domein alleen positieve gehele getallen), dan heeft de rij ook dit limiet.
1
Voorbeeld: 𝑓(𝑥) = 𝑥 2
1 1
Daarvan weet je lim = 0, dan geldt dus ook lim =0
𝑥→∞ 𝑥 2 𝑛→∞ 𝑛 2
1 1 1 1
Want 𝑎𝑛 = 𝑛2 en dat geeft {1, 4 , 9 , 16 , … }
1 1
In het algemeen weten we zelfs dat lim = 0 waar 𝑟 > 0 en dus lim = 0 waar 𝑟 > 0.
𝑥→∞ 𝑥 𝑟 𝑛→∞ 𝑛 𝑟


Rekenregels
De rekenregels voor limieten staan hieronder. Deze gelden alleen als {𝑎𝑛 } en {𝑏𝑛 } convergent zijn.
lim (𝑎𝑛 + 𝑏𝑛 ) = lim 𝑎𝑛 + lim 𝑏𝑛
𝑛→∞ 𝑛→∞ 𝑛→∞
lim (𝑎𝑛 − 𝑏𝑛 ) = lim 𝑎𝑛 − lim 𝑏𝑛
𝑛→∞ 𝑛→∞ 𝑛→∞
lim 𝑐𝑎𝑛 = 𝑐 lim 𝑎𝑛
𝑛→∞ 𝑛→∞
lim 𝑐 = 𝑐
𝑛→∞
lim (𝑎𝑛 𝑏𝑛 ) = lim 𝑎𝑛 ∙ lim 𝑏𝑛
𝑛→∞ 𝑛→∞ 𝑛→∞
𝑎 lim 𝑎𝑛
lim 𝑏𝑛 = 𝑛→∞ mits lim 𝑏𝑛 ≠ 0
𝑛→∞ 𝑛 lim 𝑏 𝑛→∞
𝑛→∞ 𝑛
𝑝
lim 𝑎𝑛𝑝 = [ lim 𝑎𝑛 ] als 𝑝 > 0 en 𝑎𝑛 > 0
𝑛→∞ 𝑛→∞



𝑛+1
Voorbeeld: 𝑎𝑛 = 𝑛
1
lim 𝑎𝑛 = lim (1 + 𝑛) (delen door de hoogste macht van n in de noemer)
𝑛→∞ 𝑛→∞
1
= lim 1 + lim
𝑛→∞ 𝑛→∞ 𝑛
=1+0
= 1, dus de rij is convergent.

𝑛 2+1
Voorbeeld: 𝑏𝑛 = 𝑛
1
lim 𝑏𝑛 = lim (𝑛 + 𝑛) (delen door de hoogste macht van n in de noemer)
𝑛→∞ 𝑛→∞
1
= lim 𝑛 + lim
𝑛→∞ 𝑛→∞ 𝑛
=∞+0
= ∞, dus de rij is divergent.

ln 𝑛
Voorbeeld: lim
𝑛→∞ 𝑛
Zowel de teller als de noemer gaan in dit geval naar ∞, dus we zouden de regel van l’Hospital willen
toepassen. Daarvoor schrijven we de rij om naar een functie met reële getallen. Dit mag overigens
alleen als de functie continu is.
1
ln 𝑥 𝑥
lim = lim =0
𝑥→∞ 𝑥 𝑥→∞ 1
ln 𝑛
Dus lim =0
𝑛→∞ 𝑛




3

, Stelling
De insluitstelling kunnen we ook toepassen op rijen.
Als (1) 𝑎𝑛 ≤ 𝑏𝑛 ≤ 𝑐𝑛 voor 𝑛 ≥ 𝑛0 en (2) lim 𝑎𝑛 = lim 𝑐𝑛 = 𝐿,
𝑛→∞ 𝑛→∞
dan lim 𝑏𝑛 = 𝐿.
𝑛→∞


Met 𝑛0 wordt het punt bedoeld vanaf waar 𝑎𝑛 ≤ 𝑏𝑛 ≤ 𝑐𝑛 geldt.

cos 𝑛
Voorbeeld: { } = {cos 1 , cos 2 , cos 3 , … }. Deze rij is
𝑛
convergent. Laat dit zien met behulp van de insluitstelling.
1 cos 𝑛 1
(1) − 𝑛 ≤ ≤𝑛 (want de cosinus is minimaal -1 en maximaal 1)
𝑛
𝑎𝑛 ≤ 𝑏𝑛 ≤ 𝑐𝑛

1
(2) lim 𝑎𝑛 = lim − = 0
𝑛→∞ 𝑛→∞ 𝑛
1
lim 𝑐𝑛 = lim =0
𝑛→∞ 𝑛→∞ 𝑛
cos 𝑛
Dus lim 𝑏𝑛 = lim =0
𝑛→∞ 𝑛→∞ 𝑛


Stelling
Als lim |𝑎𝑛 | = 0, dan lim 𝑎𝑛 = 0
𝑛→∞ 𝑛→∞
Bewijs: lim |𝑎𝑛 | = 0, dan lim −|𝑎𝑛 | = −0 = 0 (zie 2e rekenregel)
𝑛→∞ 𝑛→∞
Omdat −|𝑎𝑛 | ≤ 𝑎𝑛 ≤ |𝑎𝑛 | geldt volgens de insluitstelling lim 𝑎𝑛 = 0
𝑛→∞

(−1)𝑛 1 1 1
Voorbeeld: lim = {−1, 2 , − 3 , 4 , … }
𝑛→∞ 𝑛
(−1)𝑛 1
lim | | = lim = 0.
𝑛→∞ 𝑛 𝑛→∞ 𝑛
(−1)𝑛
Volgens de absolutewaardestelling geldt dus dat lim =0
𝑛→∞ 𝑛


Stelling
Als lim 𝑎𝑛 = 𝐿 en 𝑓(𝑥) is continu op L, dan lim 𝑓(𝑎𝑛 ) = 𝑓(𝐿)
𝑛→∞ 𝑛→∞
𝜋 𝜋
Voorbeeld: lim sin (𝑛) = sin ( lim 𝑛) = sin(0) = 0
𝑛→∞ 𝑛→∞


Stelling
We kijken verder naar een belangrijke rij, namelijk {𝑟 𝑛 }. Wanneer is deze convergent en wanneer
divergent?
We kennen de bijbehorende functie 𝑓 (𝑥) = 𝑎 𝑥 voor 𝑎 ≥ 0




𝑎>1 0<𝑎<1 𝑎=0 𝑎=1
lim 𝑎 𝑥 = ∞ lim 𝑎 𝑥 = 0 lim 𝑎 𝑥 = 0 lim 𝑎 𝑥 = 1
𝑥→∞ 𝑥→∞ 𝑥→∞ 𝑥→∞



4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
cdenhollander Hogeschool Windesheim
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
597
Lid sinds
8 jaar
Aantal volgers
526
Documenten
32
Laatst verkocht
1 dag geleden

Hoi, ik ben Chantal en ik zit nu in het eerste jaar van de studie tweedegraads Lerarenopleiding wiskunde op Windesheim, te Zwolle. Hiervoor heb ik bijna anderhalf jaar Bedrijfskunde gestudeerd aan de HU. Hiervoor heb ik bijna elk vak samengevat en er komen mogelijk nog meer samenvattingen aan.

3,9

153 beoordelingen

5
35
4
82
3
27
2
3
1
6

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen