100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Vector Calculus, Colley - Downloadable Solutions Manual (Revised)

Beoordeling
-
Verkocht
-
Pagina's
460
Cijfer
A+
Geüpload op
06-10-2022
Geschreven in
2022/2023

Description: Solutions Manual for Vector Calculus, Colley, 4e is all you need if you are in need for a manual that solves all the exercises and problems within your textbook. Answers have been verified by highly experienced instructors who teaches courses and author textbooks. If you need a study guide that aids you in your homework, then the solutions manual for Vector Calculus, Colley, 4e is the one to go for you. Disclaimer: We take copyright seriously. While we do our best to adhere to all IP laws mistakes sometimes happen. Therefore, if you believe the document contains infringed material, please get in touch with us and provide your electronic signature. and upon verification the doc will be deleted.

Meer zien Lees minder
Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
6 oktober 2022
Aantal pagina's
460
Geschreven in
2022/2023
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Chapter 1


Vectors

1.1 Vectors in Two and Three Dimensions

1. Here we just connect the point (0, 0) to the points indicated:

y
3
b
2.5

2
c
1.5

1 a

0.5

x
-1 1 2 3

2. Although more difficult for students to represent this on paper, the figures should look something like the following. Note that
the origin is not at a corner of the frame box but is at the tails of the three vectors.




3


2 a
z

1 b
c
0
-2 -2 0 2
0
2
x y


In problems 3 and 4, we supply more detail than is necessary to stress to students what properties are being used:
3. (a) (3, 1) + (−1, 7) = (3 + [−1], 1 + 7) = (2, 8).
(b) −2(8, 12) = (−2 · 8, −2 · 12) = (−16, −24).
(c) (8, 9) + 3(−1, 2) = (8 + 3(−1), 9 + 3(2)) = (5, 15).
(d) (1, 1) + 5(2, 6) − 3(10, 2) = (1 + 5 · 2 − 3 · 10, 1 + 5 · 6 − 3 · 2) = (−19, 25).
(e) (8, 10) + 3((8, −2) − 2(4, 5)) = (8 + 3(8 − 2 · 4), 10 + 3(−2 − 2 · 5)) = (8, −26).
4. (a) (2, 1, 2) + (−3,  9, 7) = (2 − 3, 1 + 9, 2 + 7) = (−1,
 10, 9).
(b) 12 (8, 4, 1) + 2 5,−7, 14 = 4, 2, 12 + 10, −14, 12 = (14, −12, 1).
(c) −2 (2, 0, 1) − 6 12 , −4, 1 = −2((2, 0, 1) − (3, −24, 6)) = −2(−1, 24, −5) = (2, −48, 10).
5. We start with the two vectors a and b. We can complete the parallelogram as in the figure on the left. The vector from the
origin to this new vertex is the vector a + b. In the figure on the right we have translated vector b so that its tail is the head of
vector a. The sum a + b is the directed third side of this triangle.


c 2012 Pearson Education, Inc. 1

,2 Chapter 1 Vectors

y y
7 7


6 6
a+b a+b

5 5 b translated


b 4 b 4


3 3


2 a 2 a


1 1


x x
-2 -1.5 -1 -0.5 0.5 1 -2 -1.5 -1 -0.5 0.5 1

6. a = (3, 2) b = (−1, 1) 3 
a − b = (3 − (−1), 2 − 1) = (4, 1) 1
2
a = 2
,1 a + 2b = (1, 4)

y

a+2b
4


3


2 a


b 1 a-b
(1/2)a

x
-2 -1 1 2 3 4 5


-1


→ −→ −→
7. (a) AB = (−3 − 1, 3 − 0, 1 − 2) = (−4, 3, −1) BA = −AB = (4, −3, 1)


(b) AC = (2 − 1, 1 − 0, 5 − 2) = (1, 1, 3)


BC = (2 − (−3), 1 − 3, 5 − 1) = (5, −2, 4)
→ −→

AC + CB = (1, 1, 3) − (5, −2, 4) = (−4, 3, −1)
(c) This result is true in general:
B




A




C

Head-to-tail addition demonstrates this.


c 2012 Pearson Education, Inc.

, Section 1.1. Vectors in Two and Three Dimensions 3

8. The vectors a = (1, 2, 1), b = (0, −2, 3) and a + b = (1, 2, 1) + (0, −2, 3) = (1, 0, 4) are graphed below. Again note that
the origin is at the tails of the vectors in the figure.
Also, −1(1, 2, 1) = (−1, −2, −1). This would be pictured by drawing the vector (1, 2, 1) in the opposite direction.
Finally, 4(1, 2, 1) = (4, 8, 4) which is four times vector a and so is vector a stretched four times as long in the same direction.



4


b
a+b
z
2


a


0
-2 0
1 0 2
x y

9. Since the sum on the left must equal the vector on the right componentwise:
−12 + x = 2, 9 + 7 = y, and z + −3 = 5. Therefore, x = 14, y = 16, and z = 8.
10. √
If we drop a perpendicular
√ from (3, 1) to the x-axis we see that by the Pythagorean Theorem the length of the vector (3, 1) =
32 + 12 = 10.
y
1


0.8


0.6


0.4


0.2


x
0.5 1 1.5 2 2.5 3

11. Notice that b (represented by the dotted line) = 5a (represented by the solid line).
y
10


8 b


6


4


2
a
x
1 2 3 4 5




c 2012 Pearson Education, Inc.

, 4 Chapter 1 Vectors

12. Here the picture has been projected into two dimensions so that you can more clearly see that a (represented by the solid
line) = −2b (represented by the dotted line).

a 8


6


4


2


-8 -6 -4 -2 2 4

-2
b

-4

13. The natural extension to higher dimensions is that we still add componentwise and that multiplying a scalar by a vector means
that we multiply each component of the vector by the scalar. In symbols this means that:
a + b = (a1 , a2 , . . . , an ) + (b1 , b2 , . . . , bn ) = (a1 + b1 , a2 + b2 , . . . , an + bn ) and ka = (ka1 , ka2 , . . . , kan ).
In our particular examples, (1, 2, 3, 4) + (5, −1, 2, 0) = (6, 1, 5, 4), and 2(7, 6, −3, 1) = (14, 12, −6, 2).
14. The diagrams for parts (a), (b) and (c) are similar to Figure 1.12 from the text. The displacement vectors are:
(a) (1, 1, 5)
(b) (−1, −2, 3)
(c) (1, 2, −3)
(d) (−1, −2)
Note: The displacement vectors for (b) and (c) are the same but in opposite directions (i.e., one is the negative of the
other). The displacement vector in the diagram for (d) is represented by the solid line in the figure below:
y
1

0.75 P1

0.5

0.25

x
0.5 1 1.5 2 2.5 3

-0.25

-0.5
P2
-0.75

-1

15. In general, we would define the displacement vector from (a1 , a2 , . . . , an ) to (b1 , b2 , . . . , bn ) to be (b1 −a1 , b2 −a2 , . . . , bn −
an ).
In this specific problem the displacement vector from P1 to P2 is (1, −4, −1, 1).
−→
16. Let B have coordinates (x, y, z). Then AB = (x − 2, y − 5, z + 6) = (12, −3, 7) so x = 14, y = 2, z = 1 so B has
coordinates (14, 2, 1).
17. If a is your displacement vector from the Empire State Building and b your friend’s, then the displacement vector from you
to your friend is b − a.


c 2012 Pearson Education, Inc.
€35,42
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
tb4u City University New York
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
971
Lid sinds
3 jaar
Aantal volgers
776
Documenten
2374
Laatst verkocht
1 week geleden

4,0

158 beoordelingen

5
87
4
27
3
19
2
6
1
19

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen