100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Statistics 1B

Beoordeling
-
Verkocht
-
Pagina's
4
Geüpload op
01-02-2016
Geschreven in
2014/2015

summary of the book introduction to the practice of statistics










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
1 februari 2016
Aantal pagina's
4
Geschreven in
2014/2015
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Statistic 1b 6.4

6.4 Power and Inference as a Decision

 The reject-or-not view is very important for planning studies
and for understanding statistical decision theory
Power
 Fixed level ∝ significance test are closely related to
confidence intervals – in fact, two-sided test can be carried
out directly from a confidence interval
 The significance level, like the CI, says how reliable the
method is in repeated use
 Power – the probability that a fixed level ∝ significance test
will reject the NH when a particular alternative value of the
parameter is true
 Calculation of power p.386
o 1) State the NH and AH, the particular alternative we
want to detect, and the significance level ∝
o 2) Find the values of x́ that will lead you to reject the
NH
o 3) Calculate the probability of observing these values of
x́ when the alternative is true
Increasing the power
 increase ∝
 consider a particular alternative that is farther away from μ0
; values of μ that are far away from μ0 are easier to detect
 increase the sample size; more data provides more
information about μ
 decrease σ ; has the same effect as increasing the sample
size
 power calculations are important in planning studies
o a significance test low power will unlikely show a
significant effect
o failure to reject the NH when using tests of low power is
not evidence that the NH is true
Inference as decision
 the AH enter the test only to help us see what outcomes count
against the NH
 acceptance sampling –
Two Types of error
 the NH has no longer the sample status (the statement we try
to find evidence against) that it had in test of significance
 Type I error - if we reject the NH (accept AH) when in fact the
NH is true
 Type II error – if we accept the NH (reject AH) when in fact the
AH is true
 P.390 Figure 6.17 & 6.18

, Error probabilities
 Statistical inference is based on probability
 We can never be for sure, BUT by random sampling and the
laws of probability, we can say what the probabilities of both
kinds of errors are
 Significance test with a fixed level of alpha give a rule for
decision making
 We can describe the performance of a test by the probabilities
of Type I and Type II errors
 The probability of a Type I error is the probability of rejecting
the NH when it is really true
 Significance and Type I error – the significance level ∝ of
any fixed level test is the probability of a Type I error
o ∝ is the probability that the test will reject the null
hypothesis when the NH is true
 the probability of a Type II error is the probability that the test
will fail to reject the NH when μ has this alternative value
 power and Type II error – the power of a fixed level test to
detect a particular alternative is 1 minus the probability of a
Type II error for that alternative
 the difference b/w two hypotheses lies in the reasoning that
motivates the calculations
 the two types of error and their probabilities give another
interpretation of the significance test and power of a test
 calculations of power are done to test the sensitivity of the
test
The common practice of testing hypotheses
1. State the NH and AH just as in a test of significance
2. Think of the problem as a decision problem, so that the
probabilities of Type I and Type II error are relevant
3. Because of Step 1, Type I errors are more serious. Choose an
∝ (significance level) and consider only tests with
probability of Type I error no greater than ∝
4. Among theses tests, select one that makes the probability of a
Type II error as small as possible (that is, power as larger as
possible). If this probability is too large, you will have to take a
larger sample to reduce the chance of an error
 An alternative to significance testing regards the NH and AH
as two statements of equal status that we must decide b/w.
This decision theory point of view regards statistical inference
in general as giving rules for making decisions in the presence
of uncertainty
€2,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
Jana1234
1,0
(1)

Ook beschikbaar in voordeelbundel

Thumbnail
Voordeelbundel
summary of statistics 1B
-
1 11 2016
€ 32,89 Meer info

Maak kennis met de verkoper

Seller avatar
Jana1234 Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
12
Lid sinds
10 jaar
Aantal volgers
9
Documenten
27
Laatst verkocht
4 jaar geleden

1,0

1 beoordelingen

5
0
4
0
3
0
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen