100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Statistics 1B

Beoordeling
-
Verkocht
-
Pagina's
3
Geüpload op
01-02-2016
Geschreven in
2014/2015

summary of the book introduction to the practice of statistics










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
1 februari 2016
Aantal pagina's
3
Geschreven in
2014/2015
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Statistic 1b 6.3

Use and Abuse of Tests:

 Each test is valid only in certain circumstances
 AH: there is some effect or difference
 NH: there is no difference
 A low p-value presents good evidence that the research
hypothesis is true
 The spirit of a test of significance is to give a clear statement
of the degree of evidence provided by the sample against the
null hypothesis
 Statistically significant P ≤ 0.05
 However, there is no sharp boarder b/w “significant” and “not
significant” only increasingly strong evidence as the P-value
decreases
 “a scientific fact should be regarded as experimentally
established only if a properly designed experiment rarely fails
to give this level of significance.”
 When large samples are available, even tiny deviations from
the null hypothesis will be significant
 ∝ =0.05 good evidence that an effect is present
 statistical significance is not the same as practical significance
 statistical significance rarely tells us about the importance of
the experimental results
 “the foolish user of statistics who feed the data to a computer
without explanatory analysis will often be embarrassed”
o plot your data and examine it carefully, beware if
outliers
 “absent of evidence is not evidence of absence!”
 another important aspect of planning a study is to verify that
the test you plan to use does have high probability of
detecting an effect of the size you hope to find
 tests of significance and confidence intervals are based on the
laws of probability
o randomization in sampling or experimentation ensures
that these laws apply
 BUT we must often analyze data that do not arise from
randomized samples or experiments.
o To apply statistical inference to such data, we must have
confidence in a probability model for the data
 The reasoning behind statistical significance works well if you
decide what effect you are seeking, design an experiment or
sample to search for it, and use a test of significance to weigh
the evidence you get
 Many important discoveries have been made by accident
rather than by design

,  You cannot legitimately test a hypothesis on the same data
that first suggested that hypothesis
 P-values are more informative than the reject-or-not result
 Very small p-values can be highly significant, especially when
based on a large sample
 Lack of significance does not imply that the NH is true,
especially when the test has low power
Significance tests are not always valid! – faulty data collection,
outliers

Statistic Lecture 17

 CI – values which we cannot reject
 Almost always we have to use two-tailed tests
 Errors
o You cannot argue for the NH when you just cannot reject
it
o You can only argue about difference if you tested for the
difference
 Fix the sample size before the experiment!
 Statistical significance does not imply practical significance!
 Decide which type of test you use before looking at the data!
 Stroop effect:
 Ways to summarize and report results:
o Make a plot
o Absolute effect e.g.
o CI on the effect e.g.
o Statistical significance e.g.
o Standardized effect size – is an effect size scaled by the
amount of error in the data; this makes all effects
comparable, even ones with different units
 Against a standard unit e.g. standard deviation
 Cohen’s d
 d=
 signal-to-noise ratio
 estimate of
 Q – “How many population standard
deviation is my effect?”
 Quantifies the effect size, does not depend
on N; z-score does depend on N
 d has no units
 d doesn’t change when units are changed
 d is unaffected by linear transformation
 Rule of thumb:
 |d| ≈ 0.2 → small effect
 |d| ≈ 0.5 → medium effect
 |d| ≈ 0.8 → large effect
€2,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
Jana1234
1,0
(1)

Ook beschikbaar in voordeelbundel

Thumbnail
Voordeelbundel
summary of statistics 1B
-
1 11 2016
€ 32,89 Meer info

Maak kennis met de verkoper

Seller avatar
Jana1234 Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
12
Lid sinds
10 jaar
Aantal volgers
9
Documenten
27
Laatst verkocht
4 jaar geleden

1,0

1 beoordelingen

5
0
4
0
3
0
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen