Voortgezette Analyse
Deze aantekeningen zijn gemaakt voor het eerstejaarsvak Voortgezette Analyse aan de TU Delft. Het doel is
een inleiding te geven in de Laplacetransformatie, Fourierreeksen, Fouriertransformaties en curvileaire
coördinaten.
1 Laplacetransformaties
Voor nu onduidelijke reden zijn integraaltransformaties belangrijk in de wiskunde. Hierbij wordt een functie
f (t) getransformeerd naar een functie F (s) volgens:
Z β
F (s) = K(s, t)f (t) dt (1.1)
α
waar K(s, t), α en β gegeven zijn.
1.1 Definitie
De Laplacetransformatie is een voorbeeld van een integraaltransformatie. Deze is alsvolgt gedefinieerd:
Definitie Laplacetransformatie
Neem aan dat
1. f stuksgewijs continue is;
2. |f (t)| < Keat voor t ≥ M . Hier zijn K, a en M reële constanten, K en M noodzakelijk positief.
De Laplacetransformatie L{f (t)} wordt dan gegeven door:
Z ∞
L{f (t)} = F (s) = e−st f (t) dt (1.2)
0
mits deze integraal confergeert.
2
Een voorbeeld van een functie die niet voldoet aan de tweede aanname is f (t) = et . Voor iedere K en a
bestaat er een M waarvoor |f (t)| > Keat .
1
, Voorbeeld 1
Bepaal de Laplacetransformatie van f (t) = eat .
Z ∞ Z ∞
L{eat } = e−st eat dt = e−(s−a)t dt
0 ∞ 0
−1 −(s−a)t 1
= e =
s−a 0 s − a
Onder de voorwaarde dat s > a, omdat alleen dan de integraal convergeert.
Een wat uitdagender voorbeeld om meteen partieel integreren te herhalen volgt nu.
Voorbeeld 2
Bepaal de Laplacetransformatie van f (t) = sin(at).
Z ∞
L{sin(at)} = F (s) = e−st sin(at) dt
0
s ∞ −st s2
Z
1 1
F (s) = − e cos(at) dt = − 2 F (s)
a a 0 a a
Oplossen voor F (s) geeft
a
F (s) =
s2 + a2
Handig om te weten is dat
L{c1 f1 (t) + c2 f2 (t)} = c1 L{f1 (t)} + c2 L{f2 (t)} (1.3)
wat eenvoudig kan worden afgeleid met de definitie van een Laplacetransformatie.
Belangrijk is dat een Laplacetransformatie uniek is. Het is dus ook mogelijk terug te transformeren van
F (s) naar een unieke f (t). Dit wordt vaak aangegeven met f (t) = L−1 {f (t)}.
1.2 Differentiaalvergelijkingen
Een toepassing van de Laplacetransformatie is het oplossen van differentiaalvergelijkingen. We zullen ons
beperken tot lineaire differentiaalvergelijkingen met constante coëfficiënten.
Een belangrijke stelling is de volgende:
Stelling
Neem aan dat f continue en f ′ stuksgewijs continue is en aan de voorwaarden voor een Laplacetrans-
formatie is voldaan, dan geldt
L{f ′ (t)} = sL{f (t)} − f (0) (1.4)
Het bewijs is alsvolgt:
Z A
L{f ′ (t)} = lim e−st f ′ (t) dt
A→∞ 0
2
, Partieel integreren geeft
( )
A Z A
′ −st −st
L{f (t)} = lim e f (t) + se f (t) dt
A→∞ 0
0
L{f ′ (t)} = sL{f (t)} − f (0)
Hetgeen wat bewezen moest worden.
Op exact dezelfde manier kan eenvoudig worden aangetoond dat
L{f ′′ (t)} = s2 L{f (t)} − sf (0) − f ′ (0)
Dit patroon kan worden gegeneraliseerd tot de volgende stelling.
Stelling
Neem aan dat f , f ′ ,...,f (n−1) continue en f (n) stuksgewijs continue zijn en aan de voorwaarde voor
een Laplacetransformatie is voldaan, dan geldt
L{f (n) (t)} = sn L{f (t)} − sn−1 f (0) − · · · − sf (n−2) (0) − f (n−1) (0) (1.5)
Het oplossen van differentiaalvergelijkingen met Laplacetransformaties is op deze stelling gebaseerd. Stel
we nemen van een tweede orde lineare niet-homogene differentiaalvergelijking met constante coëffiënten van
beiden kanten de Laplacetransformaties:
ay ′′ + by ′ + cy = f (t)
a[s2 L{y} − sy(0)−y ′ (0)] + b[sL{y} − y(0)] + cL{y} = L{f (t)}
(as + b)y ′ (0) + ay(0) + L{f (t)}
L{y} =
as2 + bs + c
Nu is het zaak terug te transformeren naar een functie y(t), waarmee de differentiaalvergelijking is opgelost.
Voorbeeld 3
Vind de oplossing voor de differentiaalvergelijking y ′′ + y = sin(2t) met y(0) = 2 en y ′ (0) = 1.
Van beiden kanten de Laplacetransformatie nemen geeft
2
s2 Y (s) − sy(0) − y ′ (0) + Y (s) =
s2 + 4
2s3 + s2 + 8s + 6 As + B Cs + D 2s 5/3 2/3
Y (s) = 2 2
= 2 + 2 = 2 + 2 − 2
(s + 1)(s + 4) s +1 s +4 s +1 s +1 s +4
Een tabel raadplegen geeft dan
5 1
y(t) = 2 cos(t) + sin(t) − sin(2t)
3 3
1.3 Stapfuncties
Laplacetransformaties zijn uitermate geschikt voor problemen waar de aandrijvingskracht niet continue is of
impulsief. Voor het analyseren van dit soort problemen introduceren we de eenheidsstapfunctie uc :
0, t < c,
uc (t) = c≥0 (1.6)
1, t ≥ c,
3
Deze aantekeningen zijn gemaakt voor het eerstejaarsvak Voortgezette Analyse aan de TU Delft. Het doel is
een inleiding te geven in de Laplacetransformatie, Fourierreeksen, Fouriertransformaties en curvileaire
coördinaten.
1 Laplacetransformaties
Voor nu onduidelijke reden zijn integraaltransformaties belangrijk in de wiskunde. Hierbij wordt een functie
f (t) getransformeerd naar een functie F (s) volgens:
Z β
F (s) = K(s, t)f (t) dt (1.1)
α
waar K(s, t), α en β gegeven zijn.
1.1 Definitie
De Laplacetransformatie is een voorbeeld van een integraaltransformatie. Deze is alsvolgt gedefinieerd:
Definitie Laplacetransformatie
Neem aan dat
1. f stuksgewijs continue is;
2. |f (t)| < Keat voor t ≥ M . Hier zijn K, a en M reële constanten, K en M noodzakelijk positief.
De Laplacetransformatie L{f (t)} wordt dan gegeven door:
Z ∞
L{f (t)} = F (s) = e−st f (t) dt (1.2)
0
mits deze integraal confergeert.
2
Een voorbeeld van een functie die niet voldoet aan de tweede aanname is f (t) = et . Voor iedere K en a
bestaat er een M waarvoor |f (t)| > Keat .
1
, Voorbeeld 1
Bepaal de Laplacetransformatie van f (t) = eat .
Z ∞ Z ∞
L{eat } = e−st eat dt = e−(s−a)t dt
0 ∞ 0
−1 −(s−a)t 1
= e =
s−a 0 s − a
Onder de voorwaarde dat s > a, omdat alleen dan de integraal convergeert.
Een wat uitdagender voorbeeld om meteen partieel integreren te herhalen volgt nu.
Voorbeeld 2
Bepaal de Laplacetransformatie van f (t) = sin(at).
Z ∞
L{sin(at)} = F (s) = e−st sin(at) dt
0
s ∞ −st s2
Z
1 1
F (s) = − e cos(at) dt = − 2 F (s)
a a 0 a a
Oplossen voor F (s) geeft
a
F (s) =
s2 + a2
Handig om te weten is dat
L{c1 f1 (t) + c2 f2 (t)} = c1 L{f1 (t)} + c2 L{f2 (t)} (1.3)
wat eenvoudig kan worden afgeleid met de definitie van een Laplacetransformatie.
Belangrijk is dat een Laplacetransformatie uniek is. Het is dus ook mogelijk terug te transformeren van
F (s) naar een unieke f (t). Dit wordt vaak aangegeven met f (t) = L−1 {f (t)}.
1.2 Differentiaalvergelijkingen
Een toepassing van de Laplacetransformatie is het oplossen van differentiaalvergelijkingen. We zullen ons
beperken tot lineaire differentiaalvergelijkingen met constante coëfficiënten.
Een belangrijke stelling is de volgende:
Stelling
Neem aan dat f continue en f ′ stuksgewijs continue is en aan de voorwaarden voor een Laplacetrans-
formatie is voldaan, dan geldt
L{f ′ (t)} = sL{f (t)} − f (0) (1.4)
Het bewijs is alsvolgt:
Z A
L{f ′ (t)} = lim e−st f ′ (t) dt
A→∞ 0
2
, Partieel integreren geeft
( )
A Z A
′ −st −st
L{f (t)} = lim e f (t) + se f (t) dt
A→∞ 0
0
L{f ′ (t)} = sL{f (t)} − f (0)
Hetgeen wat bewezen moest worden.
Op exact dezelfde manier kan eenvoudig worden aangetoond dat
L{f ′′ (t)} = s2 L{f (t)} − sf (0) − f ′ (0)
Dit patroon kan worden gegeneraliseerd tot de volgende stelling.
Stelling
Neem aan dat f , f ′ ,...,f (n−1) continue en f (n) stuksgewijs continue zijn en aan de voorwaarde voor
een Laplacetransformatie is voldaan, dan geldt
L{f (n) (t)} = sn L{f (t)} − sn−1 f (0) − · · · − sf (n−2) (0) − f (n−1) (0) (1.5)
Het oplossen van differentiaalvergelijkingen met Laplacetransformaties is op deze stelling gebaseerd. Stel
we nemen van een tweede orde lineare niet-homogene differentiaalvergelijking met constante coëffiënten van
beiden kanten de Laplacetransformaties:
ay ′′ + by ′ + cy = f (t)
a[s2 L{y} − sy(0)−y ′ (0)] + b[sL{y} − y(0)] + cL{y} = L{f (t)}
(as + b)y ′ (0) + ay(0) + L{f (t)}
L{y} =
as2 + bs + c
Nu is het zaak terug te transformeren naar een functie y(t), waarmee de differentiaalvergelijking is opgelost.
Voorbeeld 3
Vind de oplossing voor de differentiaalvergelijking y ′′ + y = sin(2t) met y(0) = 2 en y ′ (0) = 1.
Van beiden kanten de Laplacetransformatie nemen geeft
2
s2 Y (s) − sy(0) − y ′ (0) + Y (s) =
s2 + 4
2s3 + s2 + 8s + 6 As + B Cs + D 2s 5/3 2/3
Y (s) = 2 2
= 2 + 2 = 2 + 2 − 2
(s + 1)(s + 4) s +1 s +4 s +1 s +1 s +4
Een tabel raadplegen geeft dan
5 1
y(t) = 2 cos(t) + sin(t) − sin(2t)
3 3
1.3 Stapfuncties
Laplacetransformaties zijn uitermate geschikt voor problemen waar de aandrijvingskracht niet continue is of
impulsief. Voor het analyseren van dit soort problemen introduceren we de eenheidsstapfunctie uc :
0, t < c,
uc (t) = c≥0 (1.6)
1, t ≥ c,
3