100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Formularium algemene fysica

Beoordeling
-
Verkocht
1
Pagina's
40
Geüpload op
14-09-2022
Geschreven in
2021/2022

Samenvatting van alle formules uit de cursus algemene fysica.

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
14 september 2022
Aantal pagina's
40
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

1


Hoofdstuk 2: 1-dim kinematica
Verplaatsing:
∆𝑥 = 𝑥𝑓 − 𝑥𝑖 ∆𝑥 = 𝑣𝑒𝑟𝑝𝑙𝑎𝑎𝑡𝑠𝑖𝑛𝑔 [m]
𝑥𝑓 = 𝑓𝑖𝑛𝑎𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 [m]
𝑥𝑖 = 𝑖𝑛𝑖𝑡𝑖ë𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 [m]


Gemiddelde snelheid:
∆𝑥 𝑥𝑓 − 𝑥𝑖 𝑣𝑎𝑣 = 𝑔𝑒𝑚𝑖𝑑𝑑𝑒𝑙𝑑𝑒 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
𝑣𝑎𝑣 = =
∆𝑡 𝑡𝑓 − 𝑡𝑖 ∆𝑥 = 𝑣𝑒𝑟𝑝𝑙𝑎𝑎𝑠𝑖𝑛𝑔 [m]
∆𝑡 = 𝑡𝑖𝑗𝑑𝑠𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [s]
Ogenblikkelijke snelheid:
∆𝑥 𝑑𝑥 𝑣 = 𝑜𝑔𝑒𝑛𝑏𝑙𝑖𝑘𝑘𝑒𝑙𝑖𝑗𝑘𝑒 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
𝑣 = lim =
∆𝑡→0 ∆𝑡 𝑑𝑡 𝑑𝑥
= 𝑎𝑓𝑔𝑒𝑙𝑒𝑖𝑑𝑒 𝑣𝑎𝑛 𝑥(𝑡) − 𝑔𝑟𝑎𝑓𝑖𝑒𝑘
𝑑𝑡

Gemiddelde versnelling
Δ𝑣 𝑣𝑓 − 𝑣𝑖 𝑎𝑎𝑣 = 𝑔𝑒𝑚𝑖𝑑𝑑𝑒𝑙𝑑𝑒 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 [m/s²]
𝑎𝑎𝑣 = =
Δ𝑡 𝑡𝑓 − 𝑡𝑖 ∆𝑣 = 𝑣𝑒𝑟𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑖𝑛 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
∆𝑡 = 𝑣𝑒𝑟𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑖𝑛 𝑡𝑖𝑗𝑑 [s]
Ogenblikkelijke versnelling
∆𝑣 𝑑𝑣 𝑎 = 𝑜𝑔𝑒𝑛𝑏𝑙𝑖𝑘𝑘𝑒𝑙𝑖𝑗𝑘𝑒 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 [m/s²]
𝑎 = lim =
∆𝑡→0 ∆𝑡 𝑑𝑡 𝑑𝑣
= 𝑎𝑓𝑔𝑒𝑙𝑒𝑖𝑑𝑒 𝑣𝑎𝑛 𝑑𝑒 𝑣(𝑡) − 𝑔𝑟𝑎𝑓𝑖𝑒𝑘
𝑑𝑡

EVRB: snelheid
𝑣 = 𝑣0 + 𝑎 𝑡 𝑣 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
𝑣0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
𝑎 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 [m/s²]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
EVRB: verplaatsing
1 2 𝑥 = 𝑣𝑒𝑟𝑝𝑙𝑎𝑎𝑡𝑠𝑖𝑛𝑔 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 [m]
𝑥 = 𝑥0 + 𝑣0 𝑡 + 𝑎𝑡
2 𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑒 [m]
𝑣0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
𝑎 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 [m/s²]
EVRB: v in functie van x
𝑣 2 = 𝑣02 + 2𝑎(𝑥 − 𝑥0 ) 𝑣 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
𝑣0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
𝑎 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 [m/s²]
𝑥 = 𝑓𝑖𝑛𝑎𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 [m]
𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑒 [m]
𝑥 − 𝑥0 = ∆𝑥 = 𝑣𝑒𝑟𝑝𝑙𝑎𝑎𝑡𝑠𝑖𝑛𝑔 [m]
Vrije val vanuit rust: positie
1 𝑥 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 [m]
𝑥 = 𝑔𝑡²
2 𝑔 = 𝑣𝑎𝑙𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 = 9 · 81 𝑚/𝑠²
𝑡 = 𝑡𝑖𝑗𝑑 [s]

, 2




Vrije val vanuit rust: snelheid
𝑣 = 𝑔𝑡 𝑜𝑓 𝑣 = √2𝑔𝑥 𝑣 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
𝑔 = 𝑣𝑎𝑙𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 = 9 · 81 𝑚/𝑠²
𝑡 = 𝑡𝑖𝑗𝑑 [s]
𝑥 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 [m]




Vrije val na opwaartse worp: landingstijd
2𝑣0 𝑡 = 𝑙𝑎𝑛𝑑𝑖𝑛𝑔𝑠𝑡𝑖𝑗𝑑 [s]
𝑡𝑙𝑎𝑛𝑑𝑖𝑛𝑔𝑠𝑡𝑖𝑗𝑑 =
𝑔 𝑣0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 [m/s]
𝑔 = 𝑣𝑎𝑙𝑣𝑒𝑟𝑛𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 = 9 · 81 𝑚/𝑠²



Hoofdstuk 3: Vectoren
Scalair product/dot product van 2 vectoren
⃗⃗⃗ = |𝑣⃗|⌈𝑤
𝑣⃗ · 𝑤 ⃗⃗⃗⌉ cos 𝜃 = 𝑣𝑤 cos 𝜃 𝑣⃗ = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑣𝑎𝑛 𝑣
𝑤
⃗⃗⃗ = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑣𝑎𝑛 𝑤
|𝑣⃗| = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑤𝑎𝑎𝑟𝑑𝑒 𝑣𝑎𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑣 (𝑣𝑒𝑐𝑡𝑜𝑟 𝑘𝑎𝑛 + 𝑜𝑓 − 𝑧𝑖𝑗𝑛)
|𝑤
⃗⃗⃗| = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑤𝑎𝑎𝑟𝑑𝑒 𝑣𝑎𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑤 (𝑣𝑒𝑐𝑡𝑜𝑟 𝑘𝑎𝑛 + 𝑜𝑓 − 𝑧𝑖𝑗𝑛)
𝜃 = ℎ𝑜𝑒𝑘 𝑚𝑒𝑡 𝑑𝑒 𝑥 − 𝑎𝑠 [°]
Loodrechte vectoren
𝑣⃗ · 𝑤
⃗⃗⃗ = 0 𝑣⃗ = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑣𝑎𝑛 𝑣
𝑤
⃗⃗⃗ = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑣𝑎𝑛 𝑤
Vectorieel product van 2 vectoren
|𝐶⃗| = 𝐴𝐵 sin 𝜃 |𝐶⃗| = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑤𝑎𝑎𝑟𝑑𝑒 𝑣𝑎𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝐶 (𝐶 𝑘𝑎𝑛 + 𝑜𝑓 − 𝑧𝑖𝑗𝑛)
𝜃 = ℎ𝑜𝑒𝑘 𝑡𝑢𝑠𝑠𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝐴 𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝐵 [°]
Gemiddelde snelheid
⃗⃗⃗⃗⃗
∆𝑟 𝑣⃗𝑎𝑣 = 𝑔𝑒𝑚𝑖𝑑𝑑𝑒𝑙𝑑𝑒 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑𝑠𝑣𝑒𝑐𝑡𝑜𝑟 [m/s]
𝑣⃗𝑎𝑣 =
∆𝑡 ⃗⃗⃗⃗⃗
∆𝑟 = ⃗⃗⃗⃗⃗
∆𝑥 = 𝑣𝑒𝑟𝑝𝑙𝑎𝑎𝑡𝑠𝑖𝑛𝑔𝑠𝑣𝑒𝑐𝑡𝑜𝑟 [m]
∆𝑡 = 𝑡𝑖𝑗𝑑𝑠𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [s]
Ogenblikkelijke snelheid
⃗⃗⃗⃗⃗
∆𝑟 𝑑𝑟⃗ 𝑣⃗ = 𝑜𝑔𝑒𝑛𝑏𝑙𝑖𝑘𝑘𝑒𝑙𝑖𝑗𝑘𝑒 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑𝑠𝑣𝑒𝑐𝑡𝑜𝑟 [m/s]
𝑣⃗ = lim =
∆𝑡→0 ∆𝑡 𝑑𝑡 ⃗⃗⃗⃗⃗
∆𝑟 = ⃗⃗⃗⃗⃗
∆𝑥 = 𝑣𝑒𝑟𝑠𝑐ℎ𝑖𝑙 𝑖𝑛 𝑣𝑒𝑟𝑝𝑙𝑎𝑎𝑡𝑠𝑖𝑛𝑔𝑠𝑣𝑒𝑐𝑡𝑜𝑟𝑒𝑛 [m]
𝑑𝑟⃗
= 𝑎𝑓𝑔𝑒𝑙𝑒𝑖𝑑𝑒 𝑣𝑎𝑛 𝑑𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑖ë𝑙𝑒 𝑟(𝑡) − 𝑔𝑟𝑎𝑓𝑖𝑒𝑘
𝑑𝑡

Gemiddelde versnellingsvector
⃗⃗⃗⃗⃗
∆𝑣 𝑎⃗𝑎𝑣 = 𝑔𝑒𝑚𝑖𝑑𝑑𝑒𝑙𝑑𝑒 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔𝑠𝑣𝑒𝑐𝑡𝑜𝑟 [m/s²]
𝑎⃗𝑎𝑣 =
∆𝑡 ⃗⃗⃗⃗⃗ = 𝑣𝑒𝑟𝑠𝑐ℎ𝑖𝑙 𝑖𝑛 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑𝑠𝑣𝑒𝑐𝑡𝑜𝑟𝑒𝑛 [m/s]
∆𝑣
∆𝑡 = 𝑡𝑖𝑗𝑑𝑠𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [s]
Ogenblikkelijke versnellingsvector
∆𝑣 𝑑𝑣⃗ 𝑎⃗ = 𝑜𝑔𝑒𝑛𝑏𝑙𝑖𝑘𝑘𝑒𝑙𝑖𝑗𝑘𝑒 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔𝑠𝑣𝑒𝑐𝑡𝑜𝑟 [m/s²]
𝑎⃗ = lim =
∆𝑡→0 ∆𝑡 𝑑𝑡 𝑑𝑣⃗⃗
= 𝑎𝑓𝑔𝑒𝑙𝑒𝑖𝑑𝑒 𝑣𝑎𝑛 𝑑𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑖ë𝑙𝑒 𝑣(𝑡) − 𝑔𝑟𝑎𝑓𝑖𝑒𝑘
𝑑𝑡

, 3




Hoofdstuk 4: 2-dim kinematica
Positie in functie van de tijd
1 𝑥 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑥 − 𝑎𝑠 [m]
𝑥 = 𝑥0 + 𝑣0𝑥 𝑡 + 𝑎𝑥 𝑡²
2 𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m]
𝑣𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
𝑎𝑥 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s²]
1 𝑦 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m]
𝑦 = 𝑦0 + 𝑣0𝑦 𝑡 + 𝑎𝑦 𝑡²
2 𝑦0 = 𝑏𝑒𝑔𝑖𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m]
𝑣𝑦0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
𝑎𝑦 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s²]


Snelheid in functie van de tijd
𝑣𝑥 = 𝑣0𝑥 + 𝑎𝑥 𝑡 𝑣𝑥 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑣𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
𝑎𝑥 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s²]
𝑣𝑦 = 𝑣0𝑦 + 𝑎𝑦 𝑡 𝑣𝑦 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑣𝑦0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
𝑎𝑦 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s²]
Snelheid in functie van de positie
𝑣𝑥2 = 𝑣0𝑥
2
+ 2𝑎𝑥 ∆𝑥 𝑣𝑥 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑣𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑎𝑥 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s²]
∆𝑥 = 𝑣𝑒𝑟𝑝𝑙𝑎𝑎𝑡𝑠𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m]
𝑣𝑦2 = 𝑣0𝑦
2
+ 2𝑎𝑦 ∆𝑦 𝑣𝑦 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑣𝑦0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑎𝑦 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s²]
∆𝑦 = 𝑣𝑒𝑟𝑝𝑙𝑎𝑎𝑡𝑠𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m]
Kogelbaan: positie in functie van de tijd (ax = 0; ay = -g)
𝑥 = 𝑥0 + 𝑣0𝑥 𝑡 𝑥 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m]
𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m]
𝑣𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
(𝑎𝑥 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 = 0) [m/s²]
𝑡 = 𝑡𝑖𝑗𝑑 [s]

, 4


1 𝑦 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m]
𝑦 = 𝑦0 + 𝑣0𝑦 𝑡 − 𝑔𝑡²
2 𝑦0 = 𝑏𝑒𝑔𝑖𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m]
𝑣𝑦0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
𝑎𝑦 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 = −𝑔 = −9 · 81 𝑚/𝑠²


Kogelbaan: snelheid in functie van de tijd (ax = 0; ay = -g)
𝑣𝑥 = 𝑣0𝑥 𝑣𝑥 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑣𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑣𝑦 = 𝑣0𝑦 − 𝑔𝑡 𝑣𝑦 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑣𝑦0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]


Kogelbaan: snelheid in functie van de positie ax = 0; ay = -g)
𝑣𝑥2 = 𝑣0𝑥
2
𝑣𝑥 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑣𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑣𝑦2 = 𝑣0𝑦
2
− 2𝑔∆𝑦 𝑣𝑦 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑣𝑦0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑎𝑦 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 = −𝑔 = −9 · 81 𝑚/𝑠 2
∆𝑦 = 𝑣𝑒𝑟𝑝𝑙𝑎𝑎𝑡𝑠𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m]
Horizontale lancering: positie in functie van de tijd (x0 = 0; y0 = h; vx0 = v0; vy0 = 0)
𝑥 = 𝑣0𝑥 𝑡 𝑥 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑥 − 𝑎𝑠 [m]
𝑣𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑡 = 𝑡𝑖𝑗𝑑 [s]

1
𝑦 = ℎ − 𝑔𝑡² (v0y = v0 sin 0° = 0) 𝑦 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m]
2
𝑦0 = ℎ = 𝑏𝑒𝑔𝑖𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑒 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
𝑎𝑦 = −𝑔 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 = −9 · 81 𝑚/𝑠 2
Horizontale lancering : snelheid in functie van de tijd (x0 = 0; y0 = h; vx0 = v0; vy0 = 0)
𝑣𝑥 = 𝑣0 − 𝑔𝑡 𝑣0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑣𝑥 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
𝑎𝑥 = −𝑔 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 = −9.81 𝑚/𝑠 2
𝑣𝑦 = −𝑔𝑡 𝑣𝑦 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 [m/s]
𝑎𝑦 = 𝑣𝑒𝑟𝑠𝑛𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑦 − 𝑎𝑠 = −𝑔 = −9.81 𝑚/𝑠 2
𝑡 = 𝑡𝑖𝑗𝑑 [s]
Horizontale lancering: snelheid in functie van de positie (x 0 = 0; y0 = h; vx0 = v0; vy0 = 0)
𝑣𝑥2 = 𝑣0𝑥
2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑣𝑥 = 𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑣𝑥0 = 𝑏𝑒𝑔𝑖𝑛𝑠𝑛𝑒𝑙ℎ𝑒𝑖𝑑 𝑣𝑜𝑙𝑔𝑒𝑛𝑠 𝑑𝑒 𝑥 − 𝑎𝑠 [m/s]
𝑡 = 𝑡𝑖𝑗𝑑 [s]
€9,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
celineafroditidemunter Thomas More Hogeschool
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
29
Lid sinds
3 jaar
Aantal volgers
20
Documenten
0
Laatst verkocht
14 uur geleden

4,0

2 beoordelingen

5
0
4
2
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen