100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Linear Regression IRM

Beoordeling
5,0
(2)
Verkocht
-
Pagina's
11
Geüpload op
07-09-2022
Geschreven in
2021/2022

Summary of 11 pages for the course Introduction To Research In Marketing at UVT (.)










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
7 september 2022
Aantal pagina's
11
Geschreven in
2021/2022
Type
Samenvatting

Voorbeeld van de inhoud

Lecture 2: Lineair Regression
Linear Regression: Step by Step
• Step 1 | Defining the objectives
• Step 2 | Designing the study
• Step 3 | Checking assumptions
• Step 4 | Estimating the model and assessing fit
• Step 5 | Interpreting the results
• Step 6 | Validating the results



Step 1: Defining the objectives
´ Examine the relationship between a metric dependent variable and one or more independent variables
(metric (interval, ratio), or non-metric (nominal, ordinal) -> dummies)
o Mars Pet Food: Does the market share of Frolic depend on the brand’s TV advertising budget and presence
in the retailers’ store flyer?
o Does a household’s online grocery spending depend on age, household size, and education level?
o Plopsaland De Panne: How are ticket sales affected by the ‘Ride to Happiness’ by Tomorrowland, and does
this impact depend on the weather?

Anova vs. Lineair regression
´ Linear regression is just like Anova a dependence method in which you look for a causal relationship
´ ANOVA: focus on non-metric independent variables (‘treatments’)
´ Linear regression: both non-metric and metric independent variables, and their possible interplay

Main difference:
- In Anova the focus is on non-metric explanatory variables, which we called treatments, they had
discrete alternative levels and we wanted to know about the impact of those variables
If variables that were continuous were included, they were mainly included as controls only
- In Linear Regression we are especially interest in the impact of metric independent variables as
well as non-metric ones and we may be looking at the interplay between te two


Step 2: Designing the study

´ Rows are respondents/ observations
´ Columns are the variables that we have information on

Which variables can be included?
´ Non-metric variables: nominal or ordinal -> create dummies (transform them) (use dummy coding)
´ Metric (continuous) variables: interval or ratio (and transformations of these variables, e.g., logarithmic,
power) à introduce them In their raw is also possible
´ And interactions of these variables:
• dummy and dummy
• continuous and dummy
• continuous and continuous

You can tell R that a variable is nominal or ordinal: R will automatically use one category as a benchmark, as a
reference group and then creates
dummy variables for the remaining
The linear regression model ones.

, ´ The simple linear regression model:
- Yi = b0+b1*X1i+ei
- examples:
o Satisfaction = b0+b1*child_dummyi+ei
->Does satisfaction depend on the presence of children? (Go to the orginal data file,
where number of children is, you could transform that, because you are interested in the
presence of children here into a zero and one à run a regression)
o Satisfaction = b0+b1*num.childi+ei
->Does satisfaction depend on the number of children? (Include number of children in your
analysis and then answer the question, depends on what you are expecting)

Y à Could be overall satisfaction of a consumer with the amusement park
X1 à Could be a variable of interest measured for a certain visitor Y
Than we could have a linear link between both, were B0 and B1 are the parameters to be estimated

What we have in a every regression model, that the link between the independent and the dependent variable will
never be perfect, either because:
1. Explanatory variables are missing you don’t have data on them
2. Measurement error in the dependent variable, so in all cases there will be an error term, that will remain
after accounting for the effect of your independent variables

´ The multiple linear regression model: include multiple explanatory variables at the same time
- Yi = b0+b1*X1i+b2*X2i +ei
- example:
o Satisfaction = b0+b1*child_dummyi+b2*waiti+ei
->Does satisfaction depend on the presence of children and on waiting time? (Take previous
model, but simply add a new coefficient times the value of the new variable)
Combination of a non-metric dummy variable and a continuous variable
o Satisfaction = b0+b1*num.childi+b2*waiti+ei
->Does satisfaction depend on the number of children and on waiting time? ()
Two continuous explanatory variables

!! You have an interaction when … !!
Always include the main effect, even if it does not matter or is not significant

´ The multiple linear regression model with interactions:
• Yi = b0+b1*X1i+b2*X2i+b3*X1i*X2i+ei
• example:
o Satisfaction = b0+b1*child_dummyi+b2*waiti+b3*waiti* child_dummyi+ei ->Does
satisfaction depend on the presence of children and on waiting time, and is the impact of
waiting time different for visitors with and without children? :logic could be that you
expect people with children to be much less lenient when it comes to waiting time, then
children become annoying)
o The third variables captures the interaction between the two
o If we allow for this interaction, what we want to allow for is that the effect of one
variable (waiting time) depends on the presence or the level of another variable (with or
without children)

Beoordelingen van geverifieerde kopers

Alle 2 reviews worden weergegeven
3 jaar geleden

3 jaar geleden

5,0

2 beoordelingen

5
2
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Kaat123 Tilburg University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
17
Lid sinds
7 jaar
Aantal volgers
17
Documenten
0
Laatst verkocht
2 jaar geleden

4,8

13 beoordelingen

5
11
4
1
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen