100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Wiskundige Methoden (FEB21010)

Beoordeling
-
Verkocht
-
Pagina's
5
Geüpload op
06-09-2022
Geschreven in
2019/2020

Uitgebreide samenvatting van Wiskundige Methoden (econometrie EUR)










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
6 september 2022
Aantal pagina's
5
Geschreven in
2019/2020
Type
Samenvatting

Voorbeeld van de inhoud

Combinatorics
𝑘 from 𝑛 Without repetition With repetition
𝑘-permutation from n
𝑛! 𝑘-permutation with repetition from 𝑛
With order
𝑃(𝑛, 𝑘) = 𝑛!
(𝑛 − 𝑘)!
𝑘-combination from 𝑛 𝑘-combination with repetition from 𝑛
Without order 𝑛 𝑛! 𝑛+𝑘−1 (𝑛 + 𝑘 − 1)!
* + = |𝒫(𝑁" , 𝑘)| = / 2=
𝑘 𝑘! (𝑛 − 𝑘)! 𝑘 (𝑛 − 1)! 𝑘!

One-to-one rule
Let 𝐴 and 𝐵 be finite sets. The number of elements in 𝐴 and 𝐵 is equal (|𝐴| = |𝐵|) ⟺ there is a
one-to-one correspondence (bijection) between 𝐴 and 𝐵
Rule of sum
If 𝐴 and 𝐵 are finite, disjoint sets, then |𝐴 ∪ 𝐵| = |𝐴| + |𝐵|
In general, if 𝐴 ∩ 𝐵 ≠ ∅, then |𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
Rule of product
If 𝐴 and 𝐵 are finite sets, then |𝐴 × 𝐵| = |𝐴| ∙ |𝐵|
Rule of difference
Let 𝐴 and 𝐵 be sets, then we define their difference as 𝐴\𝐵 = {𝑥 ∈ 𝐴: 𝑥 ∉ 𝐵)
If 𝐴 and 𝐵 are finite sets and 𝐵 ⊆ 𝐴, then |𝐴\𝐵| = |𝐴| − |𝐵|
Power set
Let 𝑋 be a finite set, we define 𝒫(𝑋) = {𝐴: 𝐴 ⊆ 𝑋} as the set cointaining all subsets of 𝑋
For 𝑘 ≥ 0, we define 𝒫(𝑋, 𝑘) = {𝐴: 𝐴 ⊆ 𝑋; |𝐴| = 𝑘}
Combinations without repetitions
Equals the problem to select 𝑘 elements from a set with 𝑛 elements without repetion and order,
select a subset of size 𝑘 from a set with 𝑛 elements, select an element in the set 𝒫(𝑁" , 𝑘)
Combinatorial Theorems
I. Complementarity: for 𝑛, 𝑘 ∈ ℕ with 𝑘 ≤ 𝑛, it holds that J"!K = J"#!"
K
II. Pascal’s identity: for 𝑛, 𝑘 ∈ ℕ with 1 ≤ 𝑘 ≤ 𝑛, it holds that J ! K = J"!K + J!#%
"$% "
K
Newton’s binomial theorem
Let 𝑛 ∈ ℕ and 𝑥, 𝑦 ∈ ℝ, then (𝑥 + 𝑦)" = ∑"&'%J"!K 𝑥 ! 𝑦 "#!
Combinatorial proof
0. Make a drawing to understand the equality
1. Write the left-hand side as the number of elements in a set
2. Write the right-hand side as the number of elements in a set
3. Show that the number of elements in both sets is equal by defining a one-to-one
correspondence, so for example by making a function that goes from the left-hand side to
the right-hand side and its inverse
Multinomial numbers
The number of k-permutations with repetition from 𝑛, of type 𝑡% , 𝑡( , … , 𝑡" equals
!!
*) ,) !,…,) + = ) !∙) !∙…∙) ! , with 𝑡% + 𝑡( + ⋯ + 𝑡" = 𝑘
! " # ! " #
k-combinations with repetition from n
Denote 𝑧& as the number of stars in the 𝑖th group. Then this can be viewed as a solution of the
equation 𝑧% + 𝑧( + ⋯ + 𝑧" = 𝑘 with 𝑧 ∈ {0,1,2 … }. The number of solutions is then J"$!#%!
K

, Graph Theory
Definition of a graph
A graph consists of two sets: a non-empty finite set 𝑉 of vertices and a set 𝐸 of edges, each edge
is a set of two vertices from 𝑉. The graph is denoted by 𝐺 = (𝑉, 𝐸)
Graph isomorphisms
Consider two graphs 𝐺 = (𝑉, 𝐸) and 𝐻 = (𝑊, 𝐹). A graph isomorphism 𝑓 from 𝐺 to 𝐻, is a
function 𝑓, such that 𝑓: 𝑉 → 𝑊 is a one-to-one relation and {𝑣% , 𝑣( } ∈ 𝐸 ⟺ {𝑓(𝑣% ), 𝑓(𝑣( )} ∈ 𝐹
Terminology
Consider a graph 𝐺 = (𝑉, 𝐸)
- Let 𝑒 = {𝑢, 𝑣} ∈ 𝐸 be an edge, we say that the edge 𝑒 connects 𝑢 and 𝑣, that 𝑒 is incident to
𝑢 and 𝑣 and that 𝑢 and 𝑣 are neighbors
- The degree of 𝑣 ∈ 𝑉 is the number of edges incident to 𝑣, 𝑑(𝑣) is the degree of 𝑣
- If a vertex 𝑣 ∈ 𝑉 has degree 1, then 𝑣 is and endpoint
- Let 𝐻 = (𝑊, 𝐹) be another graph, then 𝐻 is a subgraph of 𝐺 (𝐻 ⊆ 𝐺) if 𝑊 ⊆ 𝑉 and 𝐹 ⊆ 𝐸
First theorem on graph theory
Consider a graph 𝐺 = (𝑉, 𝐸), then ∑.∈0 𝑑(𝑣) = 2|𝐸|
Walking in a graph
A walk in a graph 𝐺 = (𝑉, 𝐸) is an alternating sequence 𝑣1 , 𝑒% , 𝑣% , 𝑒( , 𝑣( , … , 𝑒! , 𝑣! of vertices and
edges, such that edge 𝑒& is incident to 𝑣&#% and 𝑣& , for all 1 ≤ 𝑖 ≤ 𝑘. The number of edges in the
walk is the length of the walk. 𝑣1 is the start point of the walk, 𝑣! the end point. If 𝑣1 = 𝑣! , then
the walk is closed, otherwise it is open. The walk can also be denoted as 𝑣1 → 𝑣% → ⋯ → 𝑣!
Special walks
Open Closed and non-trivial
Contains each edge at most once Trail (route) Circuit
Contains each vertex and each edge at most one Path (pad) Cycle
Walk and path
Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑢, 𝑣 be vertices in 𝑉. Every 𝑢, 𝑣-walk contain a 𝑢, 𝑣-path
Walk and cycle
Let 𝐺 = (𝑉, 𝐸) be a graph. A closed walk in 𝐺 of odd length contains a cycle of odd length
Distance in a graph
The distance 𝑑(𝑢, 𝑣) between two vertices 𝑢, 𝑣 ∈ 𝑉 in a graph 𝐺 = (𝑉, 𝐸) is the length of the
shortest 𝑢, 𝑣-path. If there is no path from 𝑢 to 𝑣, then 𝑑(𝑢, 𝑣) if infinite
The distance in a graph satisfies the triangle inequality: 𝑑(𝑢, 𝑣) ≤ 𝑑(𝑢, 𝑤) + 𝑑(𝑤, 𝑣)
Special graphs
The complete graph 𝐾" is the graph with all possible edges, the path 𝑃" is a graph that satisfies
the properties op a path, the cycle 𝐶" is a graph that satisfies the properties op a cycle
Connected graph
A graph 𝐺 is connected if for each pair of vertices 𝑢, 𝑣, there is a 𝑢, 𝑣-path in 𝐺
If a graph is not connected, it contains several connected components
Theorem connected graphs
Let 𝐺 = (𝑉, 𝐸) be a graph. Define the complement of 𝐺 as the graph 𝐺̅ (𝑉, 𝐸f ) that has the same
set of vertices, but contains all edges 𝑒 that are not in 𝐺. Then, 𝐺 is connected and/or 𝐺̅ is
connected
Spanning subgraph
Let 𝐺 = (𝑉, 𝐸) be a graph and let 𝐻 = (𝑊, 𝐹) be a subgraph of 𝐺. 𝐻 is spanning if 𝑊 = 𝑉
Bipartite graphs
A graph is bipartite if its vertices can be split into two parts. Splitting means that edges are from
the first part to the second part, and not within a part itself.
A bipartite graph is denoted as 𝐺 = (𝑉% ∪ 𝑉( , 𝐸)

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
LeonVerweij Cals College Nieuwegein (Nieuwegein)
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
33
Lid sinds
7 jaar
Aantal volgers
19
Documenten
28
Laatst verkocht
5 maanden geleden

2,0

1 beoordelingen

5
0
4
0
3
0
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen