100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Quantitative Research Methodology: ALL LECTURE NOTES

Beoordeling
3,0
(1)
Verkocht
8
Pagina's
38
Geüpload op
27-08-2022
Geschreven in
2021/2022

Including summaries and notes for all course materials. Supporting visuals are included.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
27 augustus 2022
Aantal pagina's
38
Geschreven in
2021/2022
Type
College aantekeningen
Docent(en)
Ineke nagel
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

1


Quantitative Research Methodology - ALL LECTURE NOTES

Week 1: Statistics: Covariance, Correlation And Partial Correlation Causal
Models: Spurious Relation:
Repetition 1st year – Field: Ch1: 1.8: (22-39):

Frequency distribution (histogram): how many times each score occurs.
Normal distribution: if we drew a vertical line through the center of the distribution then
it should look the same on both sides. Characterized by the bell-shaped curve.




There are two main ways in
which a distribution can deviate
from normal: (1) lack of
symmetry (called skew) and (2)
pointiness (called kurtosis).

Skewed distributions are not
symmetrical and instead the
most frequent scores (the tall
bars on the graph) are clustered
at one end of the scale.

A skewed distribution can be
either positively skewed (the
frequent scores are clustered
at the lower end and the tail
points towards the higher or
more positive scores) or
negatively skewed (the
frequent scores are clustered
at the higher end and the tail points towards the lower or more negative scores).
Figure 1.4 shows examples of these distributions.


Mode: the score that occurs the most.

Median: middle score when scores are ranked in order of magnitude.

, 2


Mean: measure of central tendency, so the average score.

Range of scores: quantify the spread, or dispersion, of scores. Take the largest score
and subtract from it the smallest score.


Dispersion Metrics




Deviance: Difference between observed value of a variable and the value predicted by
the model. (difference between each score and the mean)

Total deviance: add up the deviances for each data point.

Sum of squared errors: Estimate of the total variability of a set of data (sum of
squared errors). Square deviances and add them up. Indication of total dispersion.

Standard deviation (σ or s): statistic that measures the dispersion of a dataset relative
to its mean. The standard deviation is calculated as the square root of variance by
determining each data point's deviation relative to the mean.

Variance: The average dispersion; that is, the sum of squares divided by the number of
observations minus 1.

, 3


Ch 2: 2.7, 2.9 (61-64, 72- 78):

Standard Error: standard deviation of sample means. The standard error is a statistical
term that measures the accuracy with which a sample distribution represents a
population by using standard deviation. In statistics, a sample mean deviates from the
actual mean of a population; this deviation is the standard error of the mean.


Standard Error:




S (also known as σ) = standard deviation.
N = population.


Null hypothesis significance testing (NHST):

Alternative hypothesis: The hypothesis or prediction from your theory would normally
be that an effect will be present. Denoted by H1.
Null hypothesis: This hypothesis is the opposite of the alternative hypothesis and so
usually states that an effect is absent. Denoted by H0.

Hypotheses can be directional or non-directional.

● A directional hypothesis states that an effect will occur, but it also states the
direction of the effect. For example, ‘If you imagine eating chocolate you will
eat less of it’ is a one-tailed hypothesis because it states the direction of the
effect (people will eat less).

● A non-directional hypothesis states that an effect will occur, but it doesn’t
state the direction of the effect. For example, ‘Imagining eating chocolate
affects the amount of chocolate you eat’ does not tell us whether people will eat
more or less.

Confidence Interval: The range of values around a statistic that are believed to
contain, within a certain probability, the true value of that statistic.

, 4


Lower boundary interval : X̅ - (1.96 x SE).
Upper boundary interval: X̅ + (1.96 x SE).

One/Two-Tailed Tests: A one-tailed test has the entire 5% of the alpha level in one
tail (in either the left, or the right tail). A two-tailed test splits your alpha level in half (as
in the image to the left). A two tailed test will have half of this (2.5%) in each tail.

P-value: Probability of obtaining test results at least as extreme as the results
actually observed, under the assumption that the null hypothesis is correct. Having
hopefully stuck to your original sampling frame and obtained the appropriate p- value,
you compare it to your original alpha value (usually 0.05). In SPSS, P value is denoted
as Sig.
● If p ≤ .01, the test is significant, there is an effect and significant
relationship. Null hypothesis can be rejected.
● If p > .01, the test is NOT significant, there is no effect and no significant
relationship. Alternative hypothesis can be rejected.

Test Statistic: used in statistical hypothesis testing. The test statistic is used to
calculate the p-value of your results, helping to decide whether to reject your null
hypothesis.

Type I error: occurs when we believe that there is a genuine effect in our population,
when in fact there isn’t one.

Type II error: occurs when we believe that there is no effect in the population when,
in reality, there is one.

Misconceptions of NHST:

Misconception 1: A significant result means that the effect is important.
Misconception 2: A non-significant result means that the null hypothesis is true.
Misconception 3: A significant result means that the null hypothesis is false.

Perhaps the biggest practical problem created by NHST is that it encourages
all-or-nothing thinking: if p < 0.05 then an effect is significant, but if p > 0.05, it is
not.

Cohen’s d: effect size used to indicate the
standardised difference between two means.
It can be used, for example, to accompany
€10,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
2 jaar geleden

3,0

1 beoordelingen

5
0
4
0
3
1
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Damber Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
64
Lid sinds
3 jaar
Aantal volgers
44
Documenten
8
Laatst verkocht
6 maanden geleden

3,8

6 beoordelingen

5
2
4
1
3
3
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen