100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary of Statistics II: Applied Quantitative Analysis

Beoordeling
-
Verkocht
-
Pagina's
16
Geüpload op
10-08-2022
Geschreven in
2019/2020

Summary of Statistics II: Applied Quantitative Analysis











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
10 augustus 2022
Aantal pagina's
16
Geschreven in
2019/2020
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

1. Comment
3 February 2020 at 13:28:35
Using b0 and b1 instead of a and
b allows us to work with multiple
variables (b3, b4, etc)

2. Comment
3 February 2020 at 14:11:15
Simple linear regression model

3. Comment
3 February 2020 at 13:34:43
Expected value (ignoring error) of y
given x

4. Comment
3 February 2020 at 13:36:18 Lecture 1: Introduction to regression analysis
Difference between points and line
(error i) Regression is related to correlation, but:
• Can estimate impact of multiple independent variables
5. Comment
• Not just strength of association, but size of effect
3 February 2020 at 13:28:35
• Can assess null hypothesis
Using b0 and b1 instead of a and
• Assumes linear correlation
b allows us to work with multiple
variables (b3, b4, etc)
Regression line
• Formula:
6. Comment
3 February 2020 at 14:12:40 • y = a + bx
Elaborate on web lecture
1 • ŷi = b0 + b1xi
• "Line of best t”: minimizes distances between points and line
• ^: estimate
• i: observation number (obs.1, obs.2, etc)




2 yi = b0 + b1xi + i

• i: error
• Mean = 0, variance = σ2 (only if y-variable is normally distributed)

3 Alternative formula: E[yi|xi] = b0 + b1xi

Ordinary Least Squares (OLS): method for finding regression line
4 • Minimizes sum of squared residuals
(yi − yî )2 = (yi − b0 − b1 xi )2
• Squared residuals: SSR = ∑ ∑
5 • Plug values into formula (ŷi = b0 + b1xi ) to find regression line
• Find b̂1 using SPSS
• b0̂ = ȳ − b1̂ x̄

Regression assumptions:
6 • Relationship between E[yi|x] and x is linear and additive
• E[ i|x] = 0




𝜀𝜀 fi 𝜀

,7. Comment
3 February 2020 at 14:14:42
Non-negative numbers (e.g. #
wars)

8. Comment
3 February 2020 at 15:02:02
Categorical/ordinal (named)




• Variables suited for regression:
• Dependent variable must be interval ratio, otherwise:
• If nominal/ordinal: logistical regression
7 • If count scale: Poisson and negative binomial regression (not in course)
• Explanatory variables can be any type
• Variance ≠ 0




Lecture 1: SPSS

Find b̂1:
[Analyze] → (Correlate] → [Bivariate…] → [Options…] → select “Cross-product deviations and
?
covariances” → [Continue] → [Paste] → click play → b1̂ =
?




Recode variable → different variables:
[Transform] → [Recode into Different Variables] → drag variable into box → [Old and New
8 Values…] → input relevant instructions → (select “Output variables are strings” if necessary) →
[Continue] → select variable → input new label → [Change] → [Paste] → click play

Add regression line to scatterplot:
Double-click graph in output viewer → [Elements] → [Fit Line at Total]

Select cases (multiple conditions):
[Data] → [Select Cases…] → select “If condition is satisfied” → [If…] → input conditions (“|”
between each full equation) → [Continue] → [Paste] → click play

, 9. Comment
10 February 2020 at 16:29:47
Produces random errors

10. Comment
10 February 2020 at 16:24:22
I.e. consider sampling error to
express uncertainty

11. Comment
10 February 2020 at 16:44:30
Since b̂ 1 is normally distributed

12. Comment
10 February 2020 at 16:28:32
SEb depends on SSr
Lecture 2: Simple Linear Regression Analysis
13. Comment
10 February 2020 at 16:40:19
9 Regression line of sample ≠ regression line of population
# explanatory variables (b1, b2,
b3, etc)

14. Comment Signi cance testing of regression line
10 February 2020 at 16:33:20 10 (Use inference to get to population parameter)
b̂ 1 is more precise
Use SPSS to generate values needed for following instructions.

11 T-test:
b̂ b1

t̂ = →t =
12
̂ b)̂
se( SEb1
• H0: b1 = 0
• H1: b1 ≠ 0
13 • df = n - p - 1
14 • Variance of b̂1 is lower if:
• X has high variance
• N is large
• has low variance (low SSR)
MSR
SÊ b1 =
• SSX
• MSR = mean square of residual
• SSX = sum of square of X variable
• Alternative:




• B: unstandardized regression coefficient




𝜀

fi
€6,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
bellakim

Maak kennis met de verkoper

Seller avatar
bellakim Universiteit Leiden
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
5
Lid sinds
3 jaar
Aantal volgers
4
Documenten
29
Laatst verkocht
1 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen